
THE ARION UNSTRUCTURED GRIDS CFD SOLVER:
THEORETICAL AND USER’S MANUAL

Version 2.2 (Build 700-1049-gd14283f)
ISCFDC Report 2023-06

Prepared by
Ya’eer Kidron and Yuval Levy

ISCFDC LTD

COPYRIGHT © October 2023
by

The authors and the Israeli CFD Center



i

Copyright and Trademark Information
© 2022 ISCFDC LTD. All rights reserved. Unauthorized use, distribution or duplica-
tion is prohibited. See the legal information in the product license for the complete
Legal Notice for ISCFDC proprietary software. If you are unable to access the Legal
Notice, please contact ISCFDC.

Third-Party Software

The PETSc Open Source Library

This software makes use of the PETSc open-source library.
The following is legal information pertaining to the use and redistribution of PETSc:

Copyright (c) 1991-2021, UChicago Argonne, LLC and the PETSc Development Team
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

Israeli Computational Fluid Dynamics Center LTD

https://petsc.org


ii

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

The CGNS Library

This software makes use of the CGNS (CFD General Notation System) library.

The HDF Library

This software makes use of the HDF5 (Hierarchical Data Format 5) Software Library
and Utilities Copyright 2006 by The HDF Group and the NCSA HDF5 (Hierarchical
Data Format 5) Software Library and Utilities Copyright 1998-2006 by The Board of
Trustees of the University of Illinois.

All rights reserved.
Redistribution and use in source and binary forms, with or without modification,

are permitted for any purpose (including commercial purposes) provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions, and the following disclaimer in the documentation and/or
materials provided with the distribution.

3. Neither the name of The HDF Group, the name of the University, nor the name
of any Contributor may be used to endorse or promote products derived from
this software without specific prior written permission from The HDF Group,
the University, or the Contributor, respectively.

Israeli Computational Fluid Dynamics Center LTD

https://http://cgns.github.io


iii

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND
THE CONTRIBUTORS ”AS IS” WITH NO WARRANTY OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED. IN NO EVENT SHALL THE HDF GROUP
OR THE CONTRIBUTORS BE LIABLE FOR ANY DAMAGES SUFFERED BY
THE USERS ARISING OUT OF THE USE OF THIS SOFTWARE, EVEN IF AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code (”Enhance-
ments”) to anyone; however, if you choose to make your Enhancements available
either publicly, or directly to The HDF Group, without imposing a separate writ-
ten license agreement for such Enhancements, then you hereby grant the following
license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare
derivative works, incorporate into other computer software, distribute, and sublicense
such enhancements or derivative works thereof, in binary and source code form.

Limited portions of HDF5 were developed by Lawrence Berkeley National Labo-
ratory (LBNL). LBNL’s Copyright Notice and Licensing Terms can be found here:
COPYING_LBNL_HDF5 file in this directory or at COPYING_LBNL_HDF5.

Contributors: National Center for Supercomputing Applications (NCSA) at the
University of Illinois, Fortner Software, Unidata Program Center (netCDF), The In-
dependent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital
Equipment Corporation (DEC).

Portions of HDF5 were developed with support from the Lawrence Berkeley Na-
tional Laboratory (LBNL) and the United States Department of Energy under Prime
Contract No. DE-AC02-05CH11231.

Portions of HDF5 were developed with support from Lawrence Livermore National
Laboratory and the United States Department of Energy under Prime Contract No.
DE-AC52-07NA27344.

Portions of HDF5 were developed with support from the University of California,
Lawrence Livermore National Laboratory (UC LLNL). The following statement ap-
plies to those portions of the product and must be retained in any redistribution of
source code, binaries, documentation, and/or accompanying materials:

Israeli Computational Fluid Dynamics Center LTD

http://support.hdfgroup.org/ftp/HDF5/releases/COPYING_LBNL_HDF5


iv

This work was partially produced at the University of California, Lawrence Liver-
more National Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract
48) between the U.S. Department of Energy (DOE) and The Regents of the University
of California (University) for the operation of UC LLNL.

DISCLAIMER: THIS WORK WAS PREPARED AS AN ACCOUNT OF WORK
SPONSORED BY AN AGENCY OF THE UNITED STATES GOVERNMENT.
NEITHER THE UNITED STATES GOVERNMENT NOR THE UNIVERSITY OF
CALIFORNIA NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY,
EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY OR RESPONSIBILITY
FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFOR-
MATION, APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR REPRE-
SENTS THAT ITS USEWOULDNOT INFRINGE PRIVATELY- OWNEDRIGHTS.
REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL PRODUCTS, PRO-
CESS, OR SERVICE BY TRADE NAME, TRADEMARK, MANUFACTURER, OR
OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS EN-
DORSEMENT, RECOMMENDATION, OR FAVORING BY THE UNITED STATES
GOVERNMENT OR THE UNIVERSITY OF CALIFORNIA. THE VIEWS AND
OPINIONS OF AUTHORS EXPRESSED HEREIN DONOTNECESSARILY STATE
OR REFLECT THOSE OF THE UNITED STATES GOVERNMENT OR THE UNI-
VERSITY OF CALIFORNIA, AND SHALL NOT BE USED FOR ADVERTISING
OR PRODUCT ENDORSEMENT PURPOSES.

The METIS Library

Copyright 1995-2013, Regents of the University of Minnesota
Licensed under the Apache License, Version 2.0 (the “License”); you may not use

this file except in compliance with the License. You may obtain a copy of the License
at METIS License (Apache License Version 2.0).

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied. See the License for

Israeli Computational Fluid Dynamics Center LTD

http://www.apache.org/licenses/LICENSE-2.0


v

the specific language governing permissions and limitations under the License.

Israeli Computational Fluid Dynamics Center LTD



vi

Contents

Abstract xvii

1 Introduction 1
1.1 Current Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Users’s Manual Arrangement . . . . . . . . . . . . . . . . . . . . . . 1

2 Physical Models 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Single-component Perfect Gas (SPG) . . . . . . . . . . . . . . . . . . 3

2.2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.2 Integral Form For Moving Grids . . . . . . . . . . . . . . . . . 5
2.2.3 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Transport Properties . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Gas Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Turbulence Models 9
3.1 RANS Turbulence Model Equations . . . . . . . . . . . . . . . . . . . 10
3.2 The k-ω-TNT Turbulence Model . . . . . . . . . . . . . . . . . . . . 12
3.3 The k-ω-SST Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 k-ω-SST-2003 Model . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Boundary Conditions for the k-ω-TNT Turbulence model . . . . . . . 16
3.5 Evaluation of the Reynolds Stress Tensor . . . . . . . . . . . . . . . . 16
3.6 Turbulence-Mean-flow Coupling . . . . . . . . . . . . . . . . . . . . . 17

4 Computational Methods 18

Israeli Computational Fluid Dynamics Center LTD



vii

4.1 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Flux Approximation Schemes . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 HLLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 AUSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2.1 AUSM+-up . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Passive Scalar Approach . . . . . . . . . . . . . . . . . . . . . 25
4.2.4 High Order Flux Approximations . . . . . . . . . . . . . . . . 26

4.3 Diffusive Flux Vector Discretization . . . . . . . . . . . . . . . . . . . 27
4.4 Time Marching Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Explicit schemes . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.1.1 Explicit Euler Scheme . . . . . . . . . . . . . . . . . 27
4.4.1.2 Runge-Kutta Schemes . . . . . . . . . . . . . . . . . 28

4.4.2 Implicit Time Marching Formulation . . . . . . . . . . . . . . 28
4.4.2.1 Point Gauss-Seidel . . . . . . . . . . . . . . . . . . . 29
4.4.2.2 Runge-Kutta Schemes . . . . . . . . . . . . . . . . . 29

5 Boundary Conditions 30
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Wall Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Impermeable Wall Conditions . . . . . . . . . . . . . . . . . . 30
5.2.2 No-Slip Condition . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.3 Adiabatic Wall . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Far Field Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.1 Turkel Type Conditions . . . . . . . . . . . . . . . . . . . . . 31

5.3.1.1 Turkel Inlet . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1.2 Turkel Outlet . . . . . . . . . . . . . . . . . . . . . . 32

5.3.2 Riemann Type Conditions . . . . . . . . . . . . . . . . . . . . 32
5.3.2.1 Riemann Inlet . . . . . . . . . . . . . . . . . . . . . 32
5.3.2.2 Riemann Outlet . . . . . . . . . . . . . . . . . . . . 33

5.3.3 Fixed (Supersonic Inlet) . . . . . . . . . . . . . . . . . . . . . 33
5.3.4 Extrapolation (Supersonic Outlet) . . . . . . . . . . . . . . . 33

Israeli Computational Fluid Dynamics Center LTD



viii

5.3.5 Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.6 Outlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.7 Inout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Symmetry Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 34

6 Computational Mesh 35
6.1 Star-CD Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 CGNS Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Parallelization 36

8 Input File, Run Preparation, and Execution 37
8.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.1.1 Scripting Language . . . . . . . . . . . . . . . . . . . . . . . . 38
8.1.2 Basic Input File: Example . . . . . . . . . . . . . . . . . . . . 39

8.2 Grid Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.3 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.3.1 Conversion Between Different Orderings . . . . . . . . . . . . 46
8.4 Log Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.5 Plot Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.6 Table Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.7 Parallel Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.8 Equation of State Options . . . . . . . . . . . . . . . . . . . . . . . . 58
8.9 Molecular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.10 BC Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.10.1 Wall Distance Calculations . . . . . . . . . . . . . . . . . . . 69
8.10.2 Freestream Conditions Override . . . . . . . . . . . . . . . . . 70

8.11 System Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.12 Solve Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.13 PETSc Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.14 UNS Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.14.1 Motion: DOF Options . . . . . . . . . . . . . . . . . . . . . . 114

Israeli Computational Fluid Dynamics Center LTD



ix

8.15 Run-time Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.15.1 Run-time Options Examples . . . . . . . . . . . . . . . . . . . 122

Bibliography 125

Israeli Computational Fluid Dynamics Center LTD



x

List of Figures

4.1 Wave structure of the HLLC approximate Riemann solver . . . . . . 20

Israeli Computational Fluid Dynamics Center LTD



xi

List of Tables

2.1 Default coefficients for Sutherland formulae (type 1) . . . . . . . . . 8
2.2 Default coefficients for Sutherland formulae (type 2) . . . . . . . . . 8

3.1 SST coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8.1 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2 Metis options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Metis options (continued) . . . . . . . . . . . . . . . . . . . . . . . 45
8.3 Conversion between different ordering (cnv2cnv) option . . . . . . . 46
8.4 Log name option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.5 Log prefix option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.6 Log per option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.7 Log stdout option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.8 Log stderr option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.9 Plot name option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.10 Plot prefix option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.11 Plot interval option . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.12 Plot sequential/overwrite option . . . . . . . . . . . . . . . . . . . . 51
8.13 Plot fvuns/eppic/cgns option . . . . . . . . . . . . . . . . . . . . . 52
8.14 Table name option . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.15 Table prefix option . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.16 Table interval option . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.17 Table sequential/overwrite option . . . . . . . . . . . . . . . . . . . 54
8.18 Table horizontal/vertical option . . . . . . . . . . . . . . . . . . . . 54
8.19 Table ray option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Israeli Computational Fluid Dynamics Center LTD



xii

8.20 Table plane.bc option . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.21 Parallel cache option . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.22 Parallel rank option . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.23 equation.of.state name option . . . . . . . . . . . . . . . . . . . . . 58
8.24 equation.of.state type option . . . . . . . . . . . . . . . . . . . . . . 59
8.25 equation.of.state R option . . . . . . . . . . . . . . . . . . . . . . . 59
8.26 equation.of.state gamma option . . . . . . . . . . . . . . . . . . . . 59
8.27 equation.of.state ref option . . . . . . . . . . . . . . . . . . . . . . . 60
8.28 Molecular name option . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.29 molecular type option . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.30 Molecular Mu1 option . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.31 Molecular Mu2 option . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.32 Molecular Ka1 option . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.33 Molecular Ka2 option . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.34 Molecular Eta0 option . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.35 Molecular C0 option . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.36 Molecular T0 option . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.37 Molecular Prandtl option . . . . . . . . . . . . . . . . . . . . . . . . 64
8.38 BC name option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.39 BC type option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.40 Boundary condition types . . . . . . . . . . . . . . . . . . . . . . . 66
8.41 Boundary conditions log option . . . . . . . . . . . . . . . . . . . . 67
8.42 BC log options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.43 BC wall.distance option . . . . . . . . . . . . . . . . . . . . . . . . 69
8.44 BC no.wall.distance option . . . . . . . . . . . . . . . . . . . . . . . 69
8.45 BC Mach option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.46 BC velocity.magnitude option . . . . . . . . . . . . . . . . . . . . . 70
8.47 BC alpha option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.48 BC beta option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.49 BC u option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.50 BC v option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Israeli Computational Fluid Dynamics Center LTD



xiii

8.51 BC w option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.52 BC T option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.53 BC p option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.54 BC trb.intensity option . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.55 System type option . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.56 System types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.57 System cell.gradient option . . . . . . . . . . . . . . . . . . . . . . . 75
8.58 Cell gradient types . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.59 System face.gradient option . . . . . . . . . . . . . . . . . . . . . . 76
8.60 Face gradient types . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.61 Limiter option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.62 Limiter types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.63 System venka.k option . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.64 System CFL option . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.65 System implicit.jacobi option . . . . . . . . . . . . . . . . . . . . . 80
8.66 System convection.noslip.diagonal option . . . . . . . . . . . . . . . 81
8.67 System convection.impermeable.diagonal option . . . . . . . . . . . 81
8.68 System convection.symmetry.diagonal option . . . . . . . . . . . . . 82
8.69 System realizability.trb.w option . . . . . . . . . . . . . . . . . . . . 82
8.70 System source.mpk option . . . . . . . . . . . . . . . . . . . . . . . 83
8.71 System damp option . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.72 System relaxation option . . . . . . . . . . . . . . . . . . . . . . . . 84
8.73 System iteration.convergence option . . . . . . . . . . . . . . . . . . 84
8.74 System 2d.tolerance option . . . . . . . . . . . . . . . . . . . . . . . 84
8.75 System log option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.76 System log options . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.77 System plot option . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.78 Plot functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.79 Solve convection.flux option . . . . . . . . . . . . . . . . . . . . . . 89
8.80 Convection flux types . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.81 Solve convection.jacobian option . . . . . . . . . . . . . . . . . . . . 90

Israeli Computational Fluid Dynamics Center LTD



xiv

8.82 Convection Jacobian types . . . . . . . . . . . . . . . . . . . . . . . 90
8.83 Solve spatial.order option . . . . . . . . . . . . . . . . . . . . . . . 91
8.84 Solve sweeps option . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.85 Solve time.march option . . . . . . . . . . . . . . . . . . . . . . . . 92
8.86 Time marching methods . . . . . . . . . . . . . . . . . . . . . . . . 93
8.87 Solve iterations option . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.88 Solve time.step.reduction option . . . . . . . . . . . . . . . . . . . . 94
8.89 Solve dual.time option . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.90 Solve global.minimal.timestep option . . . . . . . . . . . . . . . . . 95
8.91 Solve save option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.92 Solve save.path option . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.93 Solve save.sequential option . . . . . . . . . . . . . . . . . . . . . . 96
8.94 Solve load.path option . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.95 Solve load.sequence option . . . . . . . . . . . . . . . . . . . . . . . 97
8.96 Solve eos option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.97 Solve molecular option . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.98 Solve p option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.99 Solve T option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.100 Solve Mach option . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.101 Solve velocity magnitude option . . . . . . . . . . . . . . . . . . . . 99
8.102 Solve u option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.103 Solve v option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.104 Solve w option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.105 Solve alpha option . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.106 Solve beta option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.107 Solve trb.intensity option . . . . . . . . . . . . . . . . . . . . . . . . 101
8.108 Solve trb.mt option . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.109 Solve reference.mach.trb option . . . . . . . . . . . . . . . . . . . . 102
8.110 Solve reference.velocity.trb option . . . . . . . . . . . . . . . . . . . 102
8.111 Solve reference.mach option . . . . . . . . . . . . . . . . . . . . . . 102
8.112 Solve reference.velocity option . . . . . . . . . . . . . . . . . . . . . 103

Israeli Computational Fluid Dynamics Center LTD



xv

8.113 Solve reference.length option . . . . . . . . . . . . . . . . . . . . . . 103
8.114 Solve ref option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.115 Solve plot option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.116 Solve plot options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.117 Solve log option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.118 Solve log options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.119 Solve wall distance option . . . . . . . . . . . . . . . . . . . . . . . 107
8.120 UNS name option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.121 UNS prefix option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.122 UNS key option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.123 UNS scale option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.124 UNS log option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.125 UNS log options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.126 UNS DOF angular rate motion option . . . . . . . . . . . . . . . . 114
8.127 UNS DOF velocity motion option . . . . . . . . . . . . . . . . . . . 115
8.128 UNS DOF acceleration motion option . . . . . . . . . . . . . . . . . 116
8.129 UNS DOF angular rate init option . . . . . . . . . . . . . . . . . . 117
8.130 UNS DOF velocity init option . . . . . . . . . . . . . . . . . . . . . 118
8.131 UNS DOF acceleration init option . . . . . . . . . . . . . . . . . . . 118
8.132 UNS DOF motion origin option . . . . . . . . . . . . . . . . . . . . 119
8.133 DOF log options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.134 Run-time options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.135 Run-time options examples . . . . . . . . . . . . . . . . . . . . . . . 123

Israeli Computational Fluid Dynamics Center LTD



xvi

Listings

8.1 Example of a simple Arion input file . . . . . . . . . . . . . . . . . . 39

Israeli Computational Fluid Dynamics Center LTD



xvii

Abstract

This manual describes the algorithms, methods, and input and output files of the
Arion code. In addition, the manual serves as the user’s manual of the code. The
current version of the code is the first release production version of the code, still un-
dergoing continuous development efforts. As of the current revision, the code provides
the capability to simulate inviscid, laminar, and turbulent steady flows. Currently,
the flow solver contains the HLLC approximate Riemann solver, the AUSM+-up, or
the AUSM-DV schemes for the approximation of the convective fluxes and the k−ω-
TNT turbulence model. The code is fully parallel using a distributed architecture, as
well as by shared memory (OpenMP) using hybrid architecture.

Israeli Computational Fluid Dynamics Center LTD



1

Chapter 1

Introduction

This manual describes the algorithms, methods, and input/output files of the Arion
code. In addition, the manual serves as the user’s manual of the code.

1.1 Current Release
The current version of the code has gone through various changes. As of the current
revision, the code provides the capability to simulate inviscid, laminar, and turbulent
steady flows. Currently, the flow solver contains the HLLC approximate Riemann
solver, the AUSM+-up scheme, or the AUSM-DV schemes for the approximation of the
convective fluxes. Turbulence may be modeled using either the k−ω-TNT or the k−ω-
SST turbulence models. The code is fully parallel using a distributed architecture.
Domain decomposition is carried out using the Metis open source library.

1.2 Users’s Manual Arrangement
The report is arranged in the following manner: Chapter 2 contains a description
of the available physical models while Chapter 3 describes the turbulence models
that are used in the code. Chapter 4 is dedicated to a detailed description of the
computational methods. Chapter 5 briefly describes the boundary conditions while
Chapter 6 describes the type and format of unstructured meshes that the code sup-

Israeli Computational Fluid Dynamics Center LTD



Introduction 2

ports. Chapter 7 describes the parallelization of the code. Chapter 8 contains a
detailed description of the input file syntax, and actually serves as the code’s refer-
ence manual.

Israeli Computational Fluid Dynamics Center LTD



3

Chapter 2

Physical Models

2.1 Introduction
Computer simulations are generally based upon the numerical solution of the model
equations in a discretized mode. The accuracy of the computations depends mainly on
the physical modeling, the numerical algorithm, and the quality of the computational
mesh. At its current developmental stage, the Arion code provides the capability
to simulate only single-component perfect gas flows, in particular, air flows. This
chapter contains a description of the physical models that are available in the solver.

2.2 Single-component Perfect Gas (SPG)

2.2.1 Governing Equations

The equations governing single-component, perfect gas fluid flow are derived from the
laws of conservation of mass, momentum, and total energy. The set of five partial
differential equations is known as the Navier-Stokes equations and can be represented
in a conservation-law form that is convenient for numerical simulations, namely

∂Q

∂t
+
∂ (Ec − Ed)

∂x
+
∂ (Fc − Fd)

∂y
+
∂ (Gc −Gd)

∂z
= 0 (2.1)

Israeli Computational Fluid Dynamics Center LTD



Physical Models 4

where Q is the vector of conserved mass, momentum, and energy

Q =



ρ

ρu

ρv

ρw

E


(2.2)

where the density is denoted by ρ, the Cartesian velocity vector components are
denoted by u,v and w, and E denotes the total (internal and kinetic) energy of the
gas. The inviscid flux vectors, Ec, Fc, and Gc, are

Ec =



ρu

ρu2 + p

ρuv

ρuw

u (E + p)


, Fc =



ρv

ρuv

ρv2 + p

ρvw

v (E + p)


, Gc =



ρw

ρuw

ρvw

ρw2 + p

w (E + p)


(2.3)

and the viscous flux vectors, Ed, Fd, and Gd, are

Ed =



0

τxx

τyx

τzx

βx


, Fd =



0

τxy

τyy

τzy

βy


, Gd =



0

τxz

τyz

τzz

βz


(2.4)

Israeli Computational Fluid Dynamics Center LTD



Physical Models 5

where
τxx = λ

(
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
+ 2µ∂u

∂x

τyy = λ
(

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
+ 2µ∂v

∂y

τzz = λ
(

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
+ 2µ∂w

∂z

τxy = τyx = µ
(

∂u
∂y

+ ∂v
∂x

)
τxz = τzx = µ

(
∂u
∂z

+ ∂w
∂x

)
τyz = τzy = µ

(
∂v
∂z

+ ∂w
∂y

)
βx = uτxx + vτxy + wτxz + κ∂T

∂x

βy = uτyx + vτyy + wτyz + κ∂T
∂y

βz = uτzx + vτzy + wτzz + κ∂T
∂z

(2.5)

where T is the temperature. Stokes hypothesis, λ = −2
3
µ, is typically used to further

simplify Equation (2.5).
Finally, in the perfect-gas model, the source-term vector, S, may only contain

contributions from the turbulence model (see Chapter 3).

2.2.2 Integral Form For Moving Grids

For a three-dimensional flow through a finite volume Ω, enclosed by the boundary
surface ∂Ω ≡ S that is moving with a grid velocity V g, the integral form of the
conservation equations in an inertial frame of reference is given as:

∂

∂t

∫
Ω

QdΩ +

∮
S

dS ·H = 0 (2.6)

where
H = (Ec − Ed) î+ (Fc − Fd) ĵ + (Gc −Gd) k̂ (2.7)

In Equation (2.6) the vector of dependent variables, Q, remains as in Equation (2.2).Sim-
ilarly, the viscous flux vectors, Ed, Fd, and Gd, appearing in Equation (2.7), remain as
in Equations (2.4) and (2.5) (see Section 2.2.1). In contrast, the inviscid flux vectors

Israeli Computational Fluid Dynamics Center LTD



Physical Models 6

take a form that reflects the motion of the grid as follows:

Ec =



ρ (u− ug)

ρu (u− ug) + p

ρv (u− ug)

ρw (u− ug)

(E + p) (u− ug) + ugp



Fc =



ρ (v − vg)

ρu (v − vg)

ρv (v − vg) + p

ρw (v − vg)

(E + p) (v − vg) + vgp



Gc =



ρ (w − wg)

ρu (w − wg)

ρv (w − wg)

ρw (w − wg) + p

(E + p) (w − wg) + wgp


(2.8)

where ug, vg, and wg are the Cartesian components of the grid velocity vector V g.
Note that currently the grid velocity vector is set to V g ≡ 0.

2.2.3 Equation of State

To close the system of fluid dynamics equations, it is necessary to establish relations
between the thermodynamics variables, p, ρ, T , and the internal energy, eI . Assuming
a perfect gas, the pressure and temperature may be obtained from the following
equation of state:

p = ρRT (2.9)

where R is the gas constant (R = 287.0 for air). By assuming further that the gas
is a calorically perfect gas (and hence the specific heats Cp and Cv are constant), the

Israeli Computational Fluid Dynamics Center LTD



Physical Models 7

equation of state takes the form:

p = ρ (γ − 1) eI (2.10)

where eI is the internal energy of the gas, and γ is the (constant) ratio of specific heats
(cp/cv). In terms of the flow variables, the pressure and temperature are calculated
using:

p = (γ − 1)

[
E − 1

2
ρ
(
u2 + v2 + w2

)]
T =

γ − 1

R

[
e− 1

2

(
u2 + v2 + w2

)]
(2.11)

where e = E
ρ
is the specific total energy.

2.2.4 Transport Properties

In addition to the equation of state, it is also necessary to establish constitutive rela-
tions, namely, relations for the coefficient of viscosity, µ, and the coefficient of thermal
conductivity, κ. In the single-component perfect gas (SPG) model, the Sutherland
formulae are exclusively used to evaluate these coefficients. The Arion code provides
two different ways to evaluate µ and κ.

The first (called “molecular.sutherland.air.1”, see Table 8.29) is based on the
following relations:

µ = Cµ1

T
3
2

T + Cµ2

κ = Cκ1

T
3
2

T + Cκ2

(2.12)

The default of the coefficients Cµ1 , Cµ2 , Cκ1 , and Cκ2 correspond to air and are
given in Table 2.1. For the purpose of simulating a gas whose transport properties
are different than air, the coefficients can be set by the user using the directives as
described in Tables 8.30, 8.31, 8.32, 8.33.

Israeli Computational Fluid Dynamics Center LTD



Physical Models 8

Fluid type Cµ1 Cµ2 Cκ1 Cκ2

Air 1.458× 10−6 110.4 2.495× 10−3 194

Table 2.1: Default coefficients for Sutherland formulae (type 1)

The second way to evaluate µ and κ (called “molecular.sutherland.air.2”, see Ta-
ble 8.29) is based on the following relations:

µ = η0
T0 − C0

T − C0

(
T

T0

) 3
2

κ =
cpµ

Pr
(2.13)

where Pr is the Prandtl number. The default of the coefficients η0, T0, and C0

correspond to air and are given in Table 2.2. The coefficients can be set by the user
using the directives as described in Tables 8.34, 8.35, 8.36, and 8.37.

Fluid type η0 C0 T0 Pr

Air 1.827× 10−5 120 291.15 0.72

Table 2.2: Default coefficients for Sutherland formulae (type 2)

2.3 Gas Selection
As mentioned above, the Arion code provides the means to simulate the flow of any
perfect gas. This is facilitated via a series of directives that allow to set the specific
gas constant, (R, see Table 8.25), the the heat capacity ratio, (γ, see Table 8.26, and
the Sutherland formulae coefficients as described in Section 2.2.4.

Israeli Computational Fluid Dynamics Center LTD



9

Chapter 3

Turbulence Models

The unsteady Navier-Stokes equations are generally considered to govern turbulent
flows in the continuum flow regime. However, turbulent flow cannot be numerically
simulated as easily as laminar flow. To resolve a turbulent flow by direct numerical
simulation (DNS) requires that all relevant length scales be properly resolved. Such
requirements place great demands on the computer resources, a fact that renders
the possibility of conducting DNS analysis about complete aircraft configurations
infeasible.

A practical approach to simulating turbulent flows is to solve the time-averaged
Navier-Stokes equations. These equations are know as the “Reynolds averaged Navier-
Stokes” (RANS) equations. The averaging of the equations of motion gives rise to
new terms that are called the Reynolds stresses. To solve the averaged equations,
the Reynolds stress tensor must be related to the flow variables through turbulence
models. The models are used to “close” the system through an additional set of
assumptions. The models are classified based on the number of additional partial
differential equations that must be solved. The Arion code currently contains only
one turbulence model, a two-equation model.

Israeli Computational Fluid Dynamics Center LTD



Turbulence Models 10

3.1 RANS Turbulence Model Equations
The Arion code treats the mean flow and turbulence models equations in a unified
manner. To this end, the Navier-Stokes equation set is extended to include the
turbulence model equations. Consequently, the discretization of the various fluxes
can be conducted in the same manner.

The equations governing turbulent flows are obtained by Favre-averaging the
Navier-Stokes equations and by modeling the Reynolds stress tensor. The unknown
averaged Reynolds stress tensor is modeled either using the Boussinesq assumption
via a linear eddy-viscosity model or by directly solving a transport equation for each
of the Reynolds stress components via a second moment closure. The general form
of the resulting Navier-Stokes equations and the turbulence model equations has the
form (for simplicity of the representation, with no loss of generality, the formulation
under the perfect gas physical model assumption is brought herein; it can be easily
extended to any physical model):

∂Q

∂t
+
∂ (Ec − Ed)

∂x
+
∂ (Fc − Fd)

∂y
+
∂ (Gc −Gd)

∂z
= S (3.1)

where S is the source term associated with the turbulence model only (once again,
under the perfect gas physical model assumption). Hence, for turbulent flow simula-
tions, Equation (3.1) replaces Equation (2.1).

In what follows, the symbol (¯ ) indicates non-weighted averaging, the symbol (˜ )
signifies mass weighted Favre averaging, and the symbol ( ′′) denotes Favre fluctu-
ations. Depending on whether the turbulence model has one, two, or m equations,
the vector of dependent variables, Q, and the vector of source terms S now take the

Israeli Computational Fluid Dynamics Center LTD



Turbulence Models 11

form:

Q =



ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

Ẽ

ρ̄q1

. . .

ρ̄qm


, S =



0

0

0

0

0

s1

. . .

sm


(3.2)

where q is the vector of turbulence model dependent variables and s, is the source
terms vector. Note that the source terms differ from model to model. The vectors
Ec, Fc, and Gc usually take the form:

Ec =



ρ̄ũ

ρ̄ũ2 + p̄

ρ̄ũṽ

ρ̄ũw̃

ũ
(
Ẽ + p̄

)
ρ̄ũq1

. . .

ρ̄ũqm


, Fc =



ρ̄ṽ

ρ̄ũṽ

ρ̄ṽ2 + p̄

ρ̄ṽw̃

ṽ
(
Ẽ + p̄

)
ρ̄ṽq1

. . .

ρ̄ṽqm


, Gc =



ρ̄w̃

ρ̄ũw̃

ρ̄ṽw̃

ρ̄w̃2 + p̄

w̃
(
Ẽ + p̄

)
ρ̄w̃q1

. . .

ρ̄w̃qm


(3.3)

Similarly, the vectors, Ed, Fd, and Gd, usually take the form:

Ed =



0

τ̄xx − ρu′′u′′

τ̄yx − ρv′′u′′

τ̄zx − ρw′′u′′

β̄x

ed1

. . .

edm


, Fd =



0

τ̄xy − ρu′′v′′

τ̄yy − ρv′′v′′

τ̄zy − ρw′′v′′

β̄y

fd1

. . .

fdm


, Gd =



0

τ̄xz − ρu′′w′′

τ̄yz − ρv′′w′′

τ̄zz − ρw′′w′′

β̄z

gd1

. . .

gdm


(3.4)

Israeli Computational Fluid Dynamics Center LTD



Turbulence Models 12

where the vectors ed, fd, and gd differ from model to model and

β̄x = ũ
(
τ̄xx − ρu′′u′′

)
+ ṽ

(
τ̄xy − ρu′′v′′

)
+ w̃

(
τ̄xz − ρu′′w′′

)
+ (κ̄+ κ̄t)

∂T̄
∂x

β̄y = ũ
(
τ̄yx − ρv′′u′′

)
+ ṽ

(
τ̄yy − ρv′′v′′

)
+ w̃

(
τ̄yz − ρv′′w′′

)
+ (κ̄+ κ̄t)

∂T̄
∂y

β̄z = ũ
(
τ̄zx − ρw′′u′′

)
+ ṽ

(
τ̄zy − ρw′′v′′

)
+ w̃

(
τ̄zz − ρw′′w′′

)
+ (κ̄+ κ̄t)

∂T̄
∂z

(3.5)

The terms κ̄ and κ̄t are the averaged molecular and turbulent heat conductivities,
respectively. The molecular heat conductivity is calculated using Sutherland’s law
(see Equation (2.12)) while the turbulent heat conductivity is calculated using

κ̄t =
cpµ̄t

Prt
(3.6)

where µ̄t denotes the turbulent viscosity. The term cp is the specific heat capacity at
constant pressure, Pr is the Prandtl number set to Pr = 0.72, and Prt is the turbulent
Prandtl number set to Prt = 0.9. The average turbulent viscosity, µ̄t differs from
model to model.

3.2 The k-ω-TNT Turbulence Model
The TNT turbulence model has two clear advantages over other two-equation tur-
bulence models: it uses a topology-free approach, and it is insensitive to the specific
turbulence dissipation rate free-stream boundary condition. The source term of the
model is given by:

S =



0

0

0

0

0

Pk − βkρ̄kω

αω
ω
k
Pk − βωρ̄ω

2 +max(E , 0)


(3.7)

Israeli Computational Fluid Dynamics Center LTD



Turbulence Models 13

The production term is denoted by Pk and it is based on the Boussinesq approximation
while E is the cross diffusion term. The turbulent viscosity is defined as

µt =
ρk

ω
(3.8)

The remaining model constants are σk = 1.5, σω = 2.0, σd = 0.5, βω = 0.075,
βk = 0.09, αω = β

β∗ − σωκ2
√
β∗ , with κ = 0.41.

A description of the boundary conditions appears in Section 3.4.

3.3 The k-ω-SST Model
There are numerous suggestions in the literature for two-equation turbulence models,
many being variations of a few baseline models. As most two equation models contain
one equation for the turbulence kinetic energy, k, one important issue is the quan-
tity chosen to represent the length scale. While ϵ is the most obvious and popular
option, it is one that causes significant problems in practice, especially in near-wall
flows approaching separation. In computational aerodynamics, the most popular al-
ternative to ϵ itself is the turbulent specific dissipation rate, ω. The attraction of
ω-based models is rooted in the observation that it gives a superior representation
of the near-wall behavior, especially in adverse pressure gradient regions. On the
other hand, one serious flaw exhibited by ω based models is the extreme sensitivity
to the value of ω at irrotational boundaries of shear flows and, by implication, also to
the value in weak-shear regions within a complex shear flow. This, as well as other
defects, have led Menter [1] to formulate a hybrid model which blends the k-ω model
near-wall regions with the k-ϵ model in regions that are far from walls. In recent
years, this model has become the most popular two-equation model in aeronautical
CFD practice, especially in weakly separated flows. Again, over the years several
variations and modifications to the original k-ω-SST model have appeared. The k-ω-
SST-2003 (following the naming convention from the TMR website) has been chosen
and implemented in the EZAir suite.

Israeli Computational Fluid Dynamics Center LTD

http://turbmodels.larc.nasa.gov


Turbulence Models 14

3.3.1 k-ω-SST-2003 Model

The transport form of the compressible k-ω-SST-2003 turbulence model contains two
transport equations. A transport equation for the turbulence kinetic energy, k, and
a second transport equation for the turbulent specific dissipation rate, ω. These
transport equations take the following form:

∂ρk

∂t
+
∂ρujk

∂xj
=

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
+ Pk − β∗ρωk (3.9)

∂ρω

∂t
+
∂ρujω

∂xj
=

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+
γω
µt

ρPk − βρω2

+ 2 (1− F1)
ρσω2
ω

∂k

∂xj

∂ω

∂xj
(3.10)

where t denotes the time and xj=[x,y,z] denote the Cartesian coordinates. The fluid
density is denoted by ρ while the Cartesian velocity vector components are denoted
by uj=[u,v,w]. The production term, denoted by Pk, is defined as

Pk = Rij
∂ui
∂xj

(3.11)

where Rij = ρu′′i u
′′
j are the Reynolds stress tensor components.

The coefficient β∗ is a constant equal to β∗ = 0.09. The rest of the model coeffi-
cients, ϕc=(σk, σω, γω, β) are blended according to

ϕc = F1ϕ1 + (1− F1)ϕ2 (3.12)

where the coefficients ϕ1 and ϕ2 are given in Table 3.1.
The F1 function, proposed by Menter [1] himself, is given as:

F1 = tanh
(
Z1

4
)

(3.13)

Israeli Computational Fluid Dynamics Center LTD



Turbulence Models 15

σk σω γω β

ϕ1 0.856 0.5 5/9 0.075
ϕ2 1.0 0.856 0.44 0.0828

Table 3.1: SST coefficients

with the argument Z1 given by:

Z1 = min

max
( √

k

β∗ωd
,
500µ

ρωd2

)
,

4σω2ρk

max

(
2σω2

ρ

ω

∂k

∂xj

∂ω

∂xj
, 10−10

)
d2

 (3.14)

The turbulent viscosity is defined as

µt =
a1ρk

max (a1ω, SF2)
(3.15)

where S is:
S =

√
2SijSij (3.16)

with
Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.17)

and the function F2 is defined as follow:

F2 = tanh
(
Z2

2
)

(3.18)

with

Z2 = max

(
2

√
k

β∗ωd
,
500ν

ωd2

)
(3.19)

In the k-ω-SST-2003 version, the production term, Pk is limited as follows

Pk = min (Pk, 10β
∗ρωk) (3.20)

A description of the boundary conditions appears in Section 3.4.

Israeli Computational Fluid Dynamics Center LTD



Turbulence Models 16

3.4 Boundary Conditions for the k-ω-TNT Turbu-
lence model

To close the solution of any of the k-ω models, the boundary conditions should be
specified. The no-slip wall boundary conditions of k and ω, denoted by kwall and
ωwall, respectively, are specified as follows:

kwall = 0 (3.21)

ωwall = 10
6ν

β1 (∆d1)
2 (3.22)

where ∆d1 denotes the distance between the center of the first cell neighboring the
wall and the wall. The inflow boundary condition of k, denoted by k∞ for external
flows is

k∞ =
3

2
(Tu · U∞)2 (3.23)

where Tu represents the turbulence intensity and U∞ is the magnitude of the inflow
velocity. The inflow boundary condition of ω, denoted as ω∞ is specified as follows:

ω∞ =
ρ̄∞k∞
(µt)∞

(3.24)

with the recommended values of (µt)∞ for external flows are as follows:

0.01 <
(µt)∞
(µ)∞

< 1.0 (3.25)

3.5 Evaluation of the Reynolds Stress Tensor
The TNT model is a linear eddy viscosity model (LEVM), and therefore the Reynolds
stress tensor that is added to the mean flow equations is defined based on the Boussi-
nesq assumption, namely:

Rij = RLEVM
ij (3.26)

Israeli Computational Fluid Dynamics Center LTD



Turbulence Models 17

where
RLEVM

ij = 2µt

(
Sij −

1

3

∂uk
∂xk

δij

)
− 2

3
ρ̄kδij (3.27)

and
Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.28)

Note that the turbulence kinetic energy k is not available with the SA-Edwards model,
therefore the term 2

3
ρ̄kδij is neglected when using the SA-Edwards model.

3.6 Turbulence-Mean-flow Coupling
In eddy-viscosity-based models, the coefficients of viscosity µ and thermal conductiv-
ity κ are replaced by the relations

µ = µ̄l + µ̄t

κ = κ̄l +
Cpµ̄t

Prt
(3.29)

to account for the effects of turbulence on the mean-flow. The turbulent Prandtl
number is assumed constant (Prt = 0.9).

Israeli Computational Fluid Dynamics Center LTD



18

Chapter 4

Computational Methods

4.1 Spatial Discretization
A conservative cell-centered finite volume methodology is employed to discretize the
governing equations. The computational domain is a unstructured hybrid grid that is
discretized into Ncv non-overlapping control volumes. A control volume, Cv is defined
by a grid volume element and ∂Γ is the volume control surface, with n = [nx, ny, nz]

T

being the outward-pointing, unit normal vector to ∂Γ. Therefore, Equation (2.6) for
a control volume Cv can be expressed as:

∂

∂t

∫
Cv

QdV +

∫
∂Γ

HdS = 0 (4.1)

where H is the rotated flux, namely,

H = Hc +Hd

Hc = Ecnx + Fcny +Gcnz

Hd = Ednx + Fdny +Gdnz (4.2)

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 19

The term Hc is the convective part of the flux while Hd is the diffusive part of the
flux. The semi-discrete form of Equation(4.1) for a non-deforming cell i is given by:

Vi
dQi

dt
= −

∑
j∈N(i)

HijSij = Ri (4.3)

where Vi denotes the cell volume, Qi is the vector of cell-averaged conservative de-
pendent variables, N (i) denotes the set of cell i neighbors, Hij is the rotated flux
vector normal to the interface ij shared by cell i and cell j, and Sij is the interface
area. The number of cell neighbors, N (i), depends on the type of the cell element.
For example, a tetrahedron has 4 neighbors and therefore N (i) = 4 whereas for a
hexahedron it is N (i) = 6. The term Ri signifies the residual of the equations. In
what follows, the subscript “i” is dropped for compactness of the representation.

4.2 Flux Approximation Schemes
In flux difference splitting, the problem of computing the cell-face fluxes for a control
volume is viewed as a series of one-dimensional Riemann problems along the direction
normal to the control-volume faces. Because some of the details of the exact solution,
obtained at considerable cost, are lost in the cell-averaged representation of the data,
the solution of the full Riemann problem is usually replaced by methods referred to as
approximate Riemann solvers. In what follows, the currently employed HLLC scheme
is described in detail.

4.2.1 HLLC

The concept of average-state approximations was introduced by Harten, Lax and van-
Leer [2] in 1983. The Harten, Lax and van-Leer (HLL) scheme is attractive because
of its robustness, conceptual simplicity, and ease of coding, but it has the serious
flaw of a diffusive contact surface. This is mainly because the HLL solver reduces
the exact Riemann problem to two pressure waves and therefore neglects the contact
surface. Toro et al [3] discussed this limitation, and proposed a modified three wave

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 20

x

m

Qr
* Q r

t
Q l

*Ql

lS S Sr

Figure 4.1: Wave structure of the HLLC approximate Riemann solver

solver, named HLLC, where the contact discontinuity is explicitly present. The HLLC
scheme is found to have the following properties:

1. Exact preservation of isolated contact discontinuities and shear waves.

2. Positivity preserving of a scalar quantity.

3. Enforcement of the entropy condition.

The resulting scheme greatly improves contact discontinuity resolution and has been
successfully used to compute compressible viscous and turbulent flows [4].

The HLLC approximate Riemann solver that is implemented in the Arion code is
as proposed by Batten et al [4]. The HLLC scheme assumes two intermediate states,
Q∗

l and Q∗
r within the region bounded by the left moving wave, Sl, and the right

moving wave, Sr (the subscripts “l” and “r” denote the left and right states of the
approximate Riemann problem, respectively). The states Q∗

l and Q∗
r are split by the

contact discontinuity, which moves with the velocity Sm (see Figure 4.1).
Two wave speed estimates can be used. In the first, the wave speeds Sl and Sr

are computed according to Einfeldt et al [5] as follows:

Sl = min[λmin, λ
Roe
min] (4.4)

Sr = max[λmax, λ
Roe
max] (4.5)

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 21

where λmin is the smallest eigenvalue and λmax is the largest eigenvalue, evaluated
at the interface. Similarly, λRoe

min and λRoe
max are the smallest and largest eigenvalues of

Roe’s average matrix [6], respectively. In the second, the wave speeds Sl and Sr are
computed according to Davis [7] as follows:

Sl = min[λmin (L) , λmin (R)] (4.6)

Sr = max[λmax (L) , λmax (R)] (4.7)

The normal velocity to the interface, denoted by q, is defined as:

q = (u− ug)nx + (v − vg)ny + (w − wg)nz (4.8)

The contact discontinuity speed Sm is evaluated according to Batten et al [4] by

Sm =
ρrqr (Sr − qr)− ρlql (Sl − ql) + pl − pr

ρr (Sr − qr)− ρl (Sl − ql)
(4.9)

This choice of Sm enforces the equality of the two star pressures, i.e., p∗ = p∗l = p∗r

which is obtained from

p∗ = ρl (ql − Sl) (ql − Sm) + pl = ρr (qr − Sr) (qr − Sm) + pr (4.10)

Introducing the intermediate left state vector

Q∗
l =



ρ∗l

(ρu)∗l

(ρv)∗l

(ρw)∗l

E∗
l


= Ωl



ρl (Sl − ql)

(Sl − ql) (ρu)l + (p∗ − pl)nx

(Sl − ql) (ρv)l + (p∗ − pl)ny

(Sl − ql) (ρw)l + (p∗ − pl)nz

(Sl − ql)El − plql + p∗Sm


(4.11)

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 22

where Ωl ≡ (Sl − Sm)
−1. The left state flux vector becomes

H∗
cl
≡ Hc (Q

∗
l ) = Q∗

l Sm +



0

p∗nx

p∗ny

p∗nz

p∗Sm


(4.12)

and the corresponding intermediate right state vector and right flux vector are ob-
tained from Equations (4.11), (4.12) by interchanging the subscripts l → r. Finally,
the numerical HLLC flux is defined as follow

Hc (Ql,Qr) =


Hc (Ql) if Sl > 0

Hc (Q
∗
l ) if Sl ≤ 0 < Sm

Hc (Q
∗
r) if Sm ≤ 0 ≤ Sr

Hc (Qr) if Sr < 0

 (4.13)

where Hc (Ql) and Hc (Qr) are the left and right analytic flux vectors, respectively.

4.2.2 AUSM

The advection upstream splitting method (AUSM) was first introduced in the year
1993 by Liou and Steffen [8]. The development of the AUSM was motivated by
the desire to combine the efficiency of flux vector splitting methods (FVS) and the
accuracy of flux differencing splitting methods (FDS). The key idea behind AUSM
schemes is the the fact that the inviscid flux vector consists of two physically distinct
parts, namely the convective terms and the pressure terms. The convective terms can
therefore be considered as passive scalar quantities convected by a suitably defined
velocity. On the other hand, the pressure flux terms are governed by the acoustics
wave speeds.

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 23

4.2.2.1 AUSM+-up

Although AUSM schemes enjoy a demonstrated improvement in accuracy, efficiency,
and robustness over existing schemes, they have been found to have deficiencies in
some cases. In the year 1996, Liou improved the original AUSM, termed now the
AUSM+ [9]. Among the improvement features of the original AUSM scheme are the
following properties: (1) exact resolution of a one-dimensional contact discontinuity
and shock discontinuities, (2) positivity preserving of scalar quantities, (3) free of
“carbuncle phenomenon”.

In the year 2006, Liou introduced a sequel scheme to the AUSM+ called the
AUSM+-up [10] extended for all speed flows. The AUSM+-up is implemented in the
Arion code and it is given as follows:

Fc (Ql,Qr) = p1/2 + ṁ1/2

{
ψ l if M1/2 > 0

ψ r otherwise

}
(4.14)

where

ψ l/r =



1

ul/r

vl/r

wl/r

Hl/r


, (4.15)

the mass flux, ṁ1/2 is defined as

ṁ1/2 = a1/2M1/2

{
ρl if M1/2 > 0

ρr otherwise
,

}
(4.16)

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 24

and the pressure flux, p1/2 is given as

p1/2 =



0

p1/2nx

p1/2ny

p1/2nz

0


(4.17)

where

p1/2 = P+
(5)(Ml)pl+P−

(5)(Mr)pr−KuP+
(5)(Ml)P−

(5)(Mr)(ρl+ρr)(faa1/2)(qr− ql) (4.18)

is the interface pressure. The interface-normal velocity is denoted by q, H denotes
the specific total enthalpy, and Ku is a constant that equals 0.75. The remaining
functions are given below. The left/right Mach number at the interface, Ml/r, is
defined as follows:

Ml/r =
ql/r
a1/2

(4.19)

where a1/2 is the speed of sound at the interface and it may be calculated by a simple
average of al and ar:

a1/2 =
al + ar

2
(4.20)

Next, the Mach number at the interface, M1/2 is calculated as follows:

M
2

=
q2l + q2r
2a21/2

M2
o = min

(
1,max

(
M

2
,M 2

∞

))
fa (Mo) = Mo (2−Mo)

ρ1/2 =
ρl + ρr

2

M1/2 = M+
(4) (Ml) +M−

(4) (Mr)−
Kp

fa
max

(
1− σM

2
, 0
) pr − pl
ρ1/2a

2
1/2

(4.21)

with the constants Kp = 0.25 and σ = 1.0. The split Mach numbers M+/−
m are

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 25

polynomial functions of degree m (=1,2,4) of the Mach number, M , given as follows:

M±
1 =

1

2
(M ± |M |)

M±
2 = ±1

4
(M ± 1)2

M±
(4)(M) =

{
M±

(1) if |M | > 0

M±
(2)(1∓ 16βM∓

(2)) otherwise

}
(4.22)

with the constant β = 1/8. Finally, the pressure polynomials are given as:

P±
(5)(M) =


1

M
M±

(1) if |M | ≥ 1

M±
(2)[(±2−M)∓ 16αMM∓

(2)) otherwise

 (4.23)

with the function α =
3

16
(−4 + 5f 2

a ).

4.2.3 Passive Scalar Approach

The Arion code implements the passive scalar approach [4] in spatial discretization
of the various model equations (e.g., turbulence, finite-rate chemistry, etc.). The pas-
sive scalar approach enables to treat the extended governing equation set (including
the model equations) in a similar manner to that presented for the Navier-Stokes
equations. For example, when using any of the k−ω models with the HLLC scheme,
the left and right state vectors are extended as follows:

Q∗
l =



ρ∗l

(ρu)∗l

(ρv)∗l

(ρw)∗l

E∗
l

(ρk)∗

(ρϕ)∗


= Ωl



ρl (Sl − ql)

(Sl − ql) (ρu)l + (p∗ − pl)nx

(Sl − ql) (ρv)l + (p∗ − pl)ny

(Sl − ql) (ρw)l + (p∗ − pl)nz

(Sl − ql)El − plql + p∗Sm

ρk

ρϕ


(4.24)

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 26

The HLLC inviscid flux is then easily evaluated using:

H∗
cl
≡ Hc (Q

∗
l ) = Q∗

l Sm +



0

p∗nx

p∗ny

p∗nz

p∗Sm

0

0


(4.25)

4.2.4 High Order Flux Approximations

For a first-order-accurate approximation, the left and right state vectors are simply
calculated from cell-center values left and right of the interface, respectively. To obtain
a higher order flux approximation, the left and right state vectors of the convective
flux are evaluated using a linear reconstruction using Green’s theorem or a Taylor
series expansion and least squares method. A cell-wise gradient of the primitive
variables is constructed, followed by a second order Taylor series expansion, the left
and right states are reconstructed. Let the vector W = (Wm;m = 1, ...7) denote the
primitive variables vector (for a general k − ω turbulence model),

W = [ρ̄, ũ, ṽ, w̃, p̄, k, ω] (4.26)

then the left and right primitive variables are reconstructed as follows:

(Wm)L = (Wm)i + (ψm)i (∇Wm)i · d
ij
i (4.27a)

(Wm)R = (Wm)j + (ψm)j (∇Wm)j · d
ij
j (4.27b)

where d ij
i

(
d ij

j

)
is the distance vector from the mid-point of face ij to the center of

cell i (j), and ψm is the cell limiter that is used to suppress oscillations in the solution.

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 27

4.3 Diffusive Flux Vector Discretization
The diffusive flux vector normal to the interface, Hd, is a function of the primitive
variables vector, W , evaluated at the mid-point of face ij, Wij, and of its derivatives.
The vector Wij is calculated by averaging of adjacent cell-center values (i.e., Wi and
Wj).

4.4 Time Marching Schemes
The Arion code provides various possibilities for advancing Equation (4.3) in time.
This section contains a brief description of the available schemes. The schemes may
be classified as follows:

1. Explicit (single and multi stage) schemes

(a) Explicit Euler

(b) Third and fourth order Runge-Kutta schemes

2. Implicit schemes

(a) Point Gauss-Seidel

3. Multi-stage implicit schemes

(a) Third fourth and fifth order Runge-Kutta implicit schemes

4.4.1 Explicit schemes

4.4.1.1 Explicit Euler Scheme

Consider the semi-discrete equation1:

V
dQ

dt
= R (4.28)

1Equation (4.3) without the index

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 28

A simple, first-order Euler explicit time marching scheme is given by:

∆Qn =
∆t

V
Rn (4.29)

where ∆Qn is the increment of the solution between time levels , namely,

∆Qn = Qn+1 −Qn (4.30)

4.4.1.2 Runge-Kutta Schemes

Arion provides the choice of third or fourth order Runge-Kutta schemes. Consider the
semi-discrete formulation as presented in Equation (4.28), the Runge-Kutta scheme
formulation is as follows:

Q(0) = Qn

Q(k) = Qn + αk
∆t

V
R(k−1), k = 1, . . . , K

Qn+1 = Q(K) (4.31)

where k is the Runge-Kutta sub-step number, K = 3 for third order and K = 4 for
fourth order, and αk are the appropriate weights.

4.4.2 Implicit Time Marching Formulation

The fine grid spacing required to resolve the normal viscous terms close to the body
surface requires in turn very small time steps and therefore it rules out the use of
explicit methods. In explicit time-marching schemes the maximum time step is pro-
portional to the minimum grid spacing. As a result the time-step limit imposed by
stability is very small. In contrast, even though the operation count per time step is
high, it is more efficient to use implicit methods. The development of a non-iterative
implicit algorithm for the solution of the Navier-Stokes equations requires a time lin-
earization of the nonlinear vectors (R). The linearization procedure is simple since
the equations are written in conservation-law form. Applying the first order Euler
implicit method and utilizing the Delta form of the equations results in the following

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 29

implicit scheme: (
V

∆t
I − ∂R

∂Q

)n

∆Qn = Rn (4.32)

where Rn is the residual at time level n as define by Equation (4.3), I is the identity
matrix, ∆t is the time increment between levels n and n + 1, the term ∂R

∂Q
is the

Jacobian matrix. Note that the Jacobian matrix is first order and that it may be
altered to improve stability.

Applying Equation (4.32) at every grid point results in a block-hepta-diagonal
matrix in three dimensions. The inversion of the matrix, or its approximation, may
be conducted in various manners, resulting in a wide variety of implicit time marching
schemes.

4.4.2.1 Point Gauss-Seidel

The exact, first order Jacobian matrix is retained only for the diagonal elements and
the off diagonal Jacobian matrices are linearized based on the previous time step as
follows:

∂R

∂Q
∆Q ≈

(
∂R

∂Q

)n

∆Qn (4.33)

Consequently, they can be moved to the right hand side.

4.4.2.2 Runge-Kutta Schemes

Runge-Kutta implicit schemes combine the explicit Runge-Kutta schemes as described
in Section 4.4.1.2 with the PGS scheme that is described in Section 4.4.2.1 to form a
robust implicit, multi-stage time marching scheme. note that this scheme requires the
matrix inversions warranted by the PGS scheme at each stage and therefore requires
more computer time per iteration.

Israeli Computational Fluid Dynamics Center LTD



30

Chapter 5

Boundary Conditions

5.1 Introduction
The Arion code contains a wide variety of boundary conditions. Being an unstruc-
tured finite volume code, the notion of a ghost cell is utilized throughout. However,
in certain cases the Jacobian and flux are explicitly dictated rather than calculated
based on the ghost. In particular, the convection Jacobian and flux. In what follows,
the subscript “g” signifies a ghost cell, the subscript “r” signifies a real cell where
the flow is solved (a “real” cell), and the subscript “f” signifies the face (prescribed)
value.

5.2 Wall Boundary Conditions

5.2.1 Impermeable Wall Conditions

Let n̂ be a unit vector normal to the face of a boundary cell, whose components are
(nx, ny, nz), and let t1 and t2 be the two unit vectors tangent to the face of a boundary

Israeli Computational Fluid Dynamics Center LTD



Boundary Conditions 31

cell, the velocity components in the ghost cell are calculated by solving the system:
nx ny nz

t1x t1y t1z

t2x t2y t2z




ug

vg

wg

 =


2V f · n̂− V r · n̂

V r · t̂1

V r · t̂2

 (5.1)

The prescribed velocity vector V f includes any motion of the boundary surface.

5.2.2 No-Slip Condition

The no-slip condition is much easier to implement:

V g = 2V f − V r (5.2)

5.2.3 Adiabatic Wall

The temperature is set using:
Tg = Tr (5.3)

while the pressure is set using
pg = pr (5.4)

The density is evaluated using the equation of state.

5.3 Far Field Conditions

5.3.1 Turkel Type Conditions

The characteristic relations that are due-to Turkel are utilized. For supersonic inflow,
the flow quantities at the inflow boundary are set based on the current values of the
corresponding boundary:

Israeli Computational Fluid Dynamics Center LTD



Boundary Conditions 32

5.3.1.1 Turkel Inlet

ρg = ρ∞ (5.5)

V g = V ∞ (5.6)

pg =
ρ∞
ρr
pr (5.7)

5.3.1.2 Turkel Outlet

ρg = ρr +
p∞ − p

a2∞
(5.8)

V g = V r (5.9)

pg = p∞ (5.10)

5.3.2 Riemann Type Conditions

Let q be the normal to the boundary face velocity. The Riemann invariants are
calculated based on the following:

R+ = qr −
2

γ − 1
a∞

R− = q∞ − 2

γ − 1
ar (5.11)

The ghost Riemann invariants are obtained using:

Rg =
1

2

(
R+ +R−) (5.12)

5.3.2.1 Riemann Inlet

ρg =
ρ∞

a
1

γ−1
∞


[
γ − 1

4

(
R− −R+

)] 1
γ−1

︸ ︷︷ ︸
ag


2

pg =
√
agρgγ (5.13)

Israeli Computational Fluid Dynamics Center LTD



Boundary Conditions 33

5.3.2.2 Riemann Outlet

Let s be the entropy, the relations for ρg and pg are given by:

s =
ργ

γp

ρg =
(
a2gs
) 1

γ−1

pg =
√
agρgγ (5.14)

5.3.3 Fixed (Supersonic Inlet)

V g = V ∞

pg = p∞

Tg = T∞ (5.15)

5.3.4 Extrapolation (Supersonic Outlet)

V g = V r

pg = pr

Tg = Tr (5.16)

5.3.5 Inlet

These boundary conditions use extrapolation for the pressure and set to “Fixed” the
rest of the variables.

(ρ, u, v, w)g = (ρ, u, v, w)∞

pg = pr (5.17)

Israeli Computational Fluid Dynamics Center LTD



Boundary Conditions 34

5.3.6 Outlet

These boundary conditions use a “Fixed” value for the pressure and use extrapolation
for the rest of the variables.

(ρ, u, v, w)g = (ρ, u, v, w)r

pg = p∞ (5.18)

5.3.7 Inout

These boundary conditions are specific to low subsonic flows. With the exception of
the pressure, these boundary conditions set “Fixed” conditions for inlet and “Extrap-
olation” conditions for outlet. Namely,

• Inlet :

(ρ, u, v, w)g = (ρ, u, v, w)∞

pg = pr (5.19)

• Outlet :

(ρ, u, v, w)g = (ρ, u, v, w)r

pg = p∞ (5.20)

5.4 Symmetry Boundary Conditions
Symmetric boundary conditions are treated exactly as an adiabatic impermeable wall.

Israeli Computational Fluid Dynamics Center LTD



35

Chapter 6

Computational Mesh

The Arion code is considered a hybrid code since it supports various cell element
types. The code supports tetrahedra, hexahedra, prism, and pyramids. Mesh gen-
eration may be conducted by any unstructured grid generator, however, users must
export the mesh using a Star-CD export or a CGNS export.

6.1 Star-CD Export
The Star-CD export results in three files. The first, a file containing the vertex infor-
mation, having the extension “.vrt.” The second, a file containing the cell elements,
having the extension “.cel.” And finally, a file containing the boundary elements (tri-
angles or quads), having the extension “.bnd.” The “.bnd” file contains the boundary
elements as well as a name for each element. The naming is conducted by the user
using the grid generation package (e.g., Pointwise). The code supports two variations
of the Star-CD format, the export by Pointwise and the export by CENTAUR (only
3-D export is supported).

6.2 CGNS Export
The CGNS export results in a single file. The file extension of the CGNS file is “.cgns.”

Israeli Computational Fluid Dynamics Center LTD



36

Chapter 7

Parallelization

The Arion flow solver is designed to work in a distributed memory architecture
using the MPI interface. The design of the code distinguishes between managing
a simulation and solving the flow field. Within the distributed MPI universe, the
first rank is responsible for managing the simulation and henceforth named ‘manager
rank’. The rest of the ranks are responsible for the flow solution and are named ‘worker
ranks’. The manager rank responsibility starts with the input analysis, and continuing
with reading the initial geometric problem (the grid files), splitting the computational
domain into parts and sending those parts to the worker ranks. Therefore, the worker
ranks know only part of the computational domain, and pass boundary data among
themselves. The manager rank is responsible for the the assembly of the ‘restart’
files, for timing all the worker threads, and for log output. Since there is a distinction
between the manager rank and the worker ranks, one must have at least two ranks
running, even if they reside on a single shared memory machine.

Israeli Computational Fluid Dynamics Center LTD



37

Chapter 8

Input File, Run Preparation, and
Execution

8.1 Preface
The Arion code is driven through the command line with optionally additional in-
put files having a certain syntax. An input file may be constructed using a simple
text editor. The solver is invoked by typing the MPI command (depending on the
MPI version of the actual machine): “mpirun [mpi options]... arion [−−f input_file]
[command-line arguments]”

The input file is made of groups of directives, each group is marked by two con-
secutive − signs. Each group has a series of options, with each option marked with
one − sign. Within the input file the sign ! means a remark until the end of the line.
A brief help of all the options may be printed to the screen by using the −−h op-
tion. The latest additions to the code may be printed to the screen using the −−new
option.

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 38

8.1.1 Scripting Language

The input file is a simple ASCII file with certain important rules. This chapter
contains a detailed description of all the available command-line options. The syntax
of each of the input options, or input file lines, follows the proceeding rules:

• The “# “ symbol means that there is a comment until the next option. One
may use as many comment lines as necessary.

• Each group of directives starts with two consecutive − signs, i.e., −− followed
by the group name and a series of options.

• Each option is marked with one − sign.

• An option may have no parameters, one parameter, or a few parameters.

• Parameters may be assigned values.

The proceeding description of the input options, or input file lines, makes use of
the following symbols:

• The “$” symbol signifies a string input.

• The “#” symbol signifies a numerical input.

• The “|” symbol signifies a choice selection.

• The “...” symbol signifies an option that can be repeated.

• Input entries that are enclosed by curly brackets, { }, are required.

• Input entries that are enclosed by square brackets, [ ], are optional.

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 39

8.1.2 Basic Input File: Example

Listing 8.1 contains a simple, basic input file for a simple simulation of the ideal-gas
flow about a two-dimensional airfoil.

--equation.of.state
-name air
-type eos.ideal.gas
-ref.p 101325
-ref.T 288

--bc
-name RIE_FREE
-type riemann

--bc
-name IWALL
-type impermeable.wall

--bc
-name XZSYM
-type 2d

--system
-name ideal.gas.mf.inviscid
-type ideal.gas.mf.inviscid
-time.step 5 100 cfl.exponential 250

-cell.gradient green.gauss.node
-limiter mlp.2d

-log convergence cfl residual log.residual

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 40

--solve
-time.march implicit.rk3.R.pgs
-convection.flux hllc.roe
-convection.jacobian hllc.roe
-sweeps 4
-spatial.order 2

-iterations 2000
-save 100
-save.path ./save/

-eos air
-p 101325
-T 288
-Mach 0.8
-alpha 1.25
-beta 0
-log convergence iter

--log
-name convergence
-prefix ./logs/convergence
-per iter
-screen

--plot
-name naca0012
-prefix ./plots/plot
-interval 100

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 41

--uns
-name naca0012-j129-uns-regular
-prefix naca0012-j129-uns-regular/naca0012-j129-uns-regular
-log convergence cl cd

--table
-name P_table
-prefix ./tables/table
-interval 10
-plane.bc 0 0 0 0 0.5 0 IWALL

Listing 8.1: Example of a simple Arion input file

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 42

8.2 Grid Files
Currently, Arion supports the Star-CD and CGNS Version 3.4 exports only. A
detailed description of the files is given in Chapter 6. Starting from Version 1.31,
Arion uses the Metis open source library to convert the Star-CD or CGNS export to
binary format. In addition, Metis assists in decomposing the computational domain
into several partitions for the purpose of efficient parallel computations. The following
section describes the use of the Metis library for conversion of the files to binary
format. The conversion results in a new set of files with “+32” added to all file
extensions, signifying that the integers are 32 bit wide.

The new set of files now contains 5 files. The vertex information has the ex-
tension“.vrt+32.” The cell elements file has the extension “.cel+32.” The boundary
elements file has the extension “.bnd+32.” In addition, two new files are generated,
one with the extension “nam+32” and the other with the extension “fac+32.” As a
result, the grid is read by the code in a fast manner.

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 43

8.3 Conversion
The conversion is conducted using the −−star2metis or −−cgns2metis directive as
described in Table 8.1. Note that the Metis options that are described in Tables 8.1
and 8.2 are taken directly from the Metis runtime help. For further information the
user is referred to the complete Metis User’s Manual.

The conversion generates a new set of files, replacing the original files that were
generated by the grid generation software package (e.g., Pointwise). The actual files
are not split but are reordered in a manner that prepares the files for a parallel read
that is efficient in terms of domain decomposition.

Conversion

Syntax arion{ −−star2metis | −−cgns2metis}$prefix #ranks $output
[metis-options]...

Description Convert the Star-CD or CGNS files to the Arion binary format and
use Metis to decompose the computational domain. See Table 8.2
for Metis options.

Parameters

star2metis Convert Star-CD files.

star2cgns Convert CGNS files.

$prefix Prefix of grid files.

#ranks Number of partitions.

$output Prefix of output files.

Examples arion −−star2metis Star-CD-file-name 64 New-file-name

arion −−cgns2metis CGNS-file-name 64 New-file-name

Table 8.1: Conversion

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 44

Metis Options

Metis Option Description

-ptype {rb | kway} Specifiy the scheme to be used for computing the k-way
partitioning: rb - Recursive bisectioning, kway - Direct
k-way partitioning [default].

-ctype {rm | shem} Specify the scheme to be used to match the vertices of
the graph; rm - Random matching, shem - Sorted heavy-
edge matching [default].

-iptype {grow | random} Specify the scheme to be used to compute the initial par-
titioning, (applies only when -ptype = rb); grow - Grow
a bisection using a greedy scheme [default], random -
Compute a bisection at random.

-objtype {cut | vol} Specify the objective that the partitioning routines will
optimize, (applies only when -ptype = kway); cut - Min-
imize the edgecut [default]; vol - Minimize the total com-
munication volume.

-no2hop Specify that the coarsening will not perform any 2-hop
matchings when the standard matching fails to suffi-
ciently contract the graph.

-contig Specify that the partitioning routines should try to pro-
duce (applies only when -ptype = kway) partitions that
are contiguous. Note that if the input graph is not con-
nected this option is ignored.

-minconn Specify that the partitioning routines should try to min-
imize the (applies only when -ptype = kway) maximum
degree of the subdomain graph, i.e., the graph in which
each partition is a node, and edges connect subdomains
with a shared interface.

Table 8.2: Metis options

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 45

Metis Options (continued)

Metis Option Description

-ufactor #x (where x is
an integer)

Specify the maximum allowed load imbalance among
the partitions. A value of x indicates that the al-
lowed load imbalance is 1+x/1000. For -ptype=rb,
the load imbalance is measured as the ratio of the
2*max(left,right)/(left+right), where left and right are
the sizes of the respective partitions at each bisection.
For -ptype=kway, the load imbalance is measured as the
ratio of max_i(pwgts[i])/avgpwgt, where pwgts[i] is the
weight of the ith partition and avgpwgt is the sum of the
total vertex weights divided by the number of partitions
requested. For -ptype=rb, the default value is 1 (i.e.,
load imbalance of 1.001) For -ptype=kway, the default
value is 30 (i.e., load imbalance of 1.03).

-niter #i Specify the number of iterations for the refinement al-
gorithms at each stage of the uncoarsening process. De-
fault is 10.

-ncuts #c Specify the number of different partitionings that it will
compute The final partitioning is the one that achieves
the best edgecut or communication volume. Default is
1.

-seed #s Select the seed of the random number generator.

Table 8.2: Metis options (continued)

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 46

8.3.1 Conversion Between Different Orderings

Arion provides the capabilities to start a simulation from a certain ordering and con-
tinue the simulation with a different ordering. This is conducted using the−−cnv2cnv
directive as described in Table 8.3.

cnv2cnv

Syntax arion −−cnv2cnv $cnv1 $cnv2 $load-prefix $save-prefix {$system1-
name}...

Description Converts Arion solution files between different orderings; creates
new restart files.

Parameters

$cnv1 Ordering type to convert from.

$cnv2 Ordering type to convert to.

$load-prefix Prefix of input files.

$save-prefix Prefix of output files.

$system1-name Name of converted system.

Examples arion −−cnv2cnv bin arion ./newsolution/oldfiles ./newsolu-
tion/newfiles ./restart/oldfiles

Table 8.3: Conversion between different ordering (cnv2cnv) option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 47

8.4 Log Control Options
Log control options are used to set up the log outputs. For example, the options
are used to set up the log file name. The log control options section starts with the
−−log directive, followed by a series of options that are described in the following
tables. It is important to note that the number of logs (and thus generated log files)
is unlimited.

Name

Syntax −name $name

Description Sets the name of the log. This name is referred to by the specific
−log options. It can be the predefined keywords: ‘stdout’, ‘screen’,
or ‘display’: where it will be only shown on the screen. It can also
be: ‘stderr’ where it will be only directed to the standard error
stream.

Parameters $name Log name.

Examples −name convergence

Table 8.4: Log name option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 48

Prefix

Syntax −prefix $prefix

Description The log file path and name prefix. The ‘.log’ suffix is added to
obtain the actual log file name.

Parameters $prefix Prefix.

Examples −prefix ./logs/convergence

Table 8.5: Log prefix option

Per

Syntax −per $type

Description Sets when the log is printed based on the $type. The possibilities
are: iter, produced every iteration (virtual time step); step, pro-
duced every step (physical time step); or pos, produced every ‘pos’
(depending on the simulation type).

Parameters $type Type (iter, step, or pos).

Examples −per pos

Table 8.6: Log per option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 49

Stdout

Syntax −stdout

Description Adds echo to the standard output as well as to the log file. One can
also use the -screen or -display (the outcome is exactly the same).

Parameters N/A

Examples −screen

Table 8.7: Log stdout option

Stderr

Syntax −stderr

Description Adds echo to the standard error as well as to the log file.

Parameters N/A

Examples −stderr

Table 8.8: Log stderr option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 50

8.5 Plot Control Options
Plot control options are used to set up the plot outputs. The plot control options
section starts with the −−plot directive, followed by a series of options that are
described in the following tables.

Name

Syntax −name $name

Description Sets the name of the plot. This name is referred to by the specific
−plot options.

Parameters $name Plot name.

Examples −name Alpha10

Table 8.9: Plot name option

Prefix

Syntax −prefix $prefix

Description The plot file path and name prefix. The actual file number is com-
posed from the prefix, and the $name as described in Table 8.120.
The ‘.fvuns’ suffix is added to the plot file name. If the computa-
tional domain has been decomposed, the files are split as well and
the number of the partition is added to the file name.

Parameters $prefix Prefix.

Examples −prefix ./plots/

Table 8.10: Plot prefix option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 51

Interval

Syntax −interval #interval

Description Sets the interval (of iterations/steps) to create the plot files.

Parameters #interval Plot interval.

Examples −interval 100

Table 8.11: Plot interval option

Sequential/overwrite

Syntax −sequential / −overwrite

Description Include position stamp in the plot files (or overwrite, without po-
sition stamp, default).

Parameters N/A

Examples −sequential

Table 8.12: Plot sequential/overwrite option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 52

FVUNS/EPPIC/CGNS

Syntax −fvuns / −eppic / −cgns

Description Select the file format to use, default is:-fvuns.

Parameters N/A

Examples −eppic

−cgns

Table 8.13: Plot fvuns/eppic/cgns option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 53

8.6 Table Control Options
Table control options are used to set up the table outputs. The table control options
section starts with the −−table directive, followed by a series of options that are
described in the following tables.

Name

Syntax −name $name

Description Sets the name of the table. This name is referred to by the specific
−table options.

Parameters $name Table name.

Examples −name Alpha10

Table 8.14: Table name option

Prefix

Syntax −prefix $prefix

Description The table file path and name prefix. The ‘.tbl’ suffix is added to
obtain the actual table file name.

Parameters $prefix Prefix.

Examples −prefix ./tables/surface-pressure

Table 8.15: Table prefix option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 54

Interval

Syntax −interval #interval

Description Sets the interval (of iterations/steps) to create the table files.

Parameters #interval Table interval.

Examples −interval 100

Table 8.16: Table interval option

Sequential/overwrite

Syntax −sequential / -overwrite

Description Include position stamp in the table files (or overwrite, without po-
sition stamp, default).

Parameters N/A

Examples −sequential

Table 8.17: Table sequential/overwrite option

Horizontal/vertical

Syntax −horizontal / -vertical

Description The table type (vertical is the default).

Parameters N/A

Examples −horizontal

Table 8.18: Table horizontal/vertical option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 55

Ray

Syntax −ray #x #y #z #vx #vy #vz

Description Create a table along a predefined ray.

Parameters
#x #y #z Ray origin.

#vx #vy #vz Ray direction.

Examples −ray 0 0 0 1 1 1

Table 8.19: Table ray option

Plane.bc

Syntax −plane.bc #x #y #z #nx #ny #nz $bc-name

Description Create a table along an intersection between a plane and a bound-
ary surface.

Parameters

#x #y #z Plane.bc origin.

#nx #ny #nz Plane.bc direction.

$bc-name The boundary surface name as assigned by the
−−bc −name directive (see Table 8.38).

Examples −plane.bc 0 0 0 1 1 1 WALL

Table 8.20: Table plane.bc option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 56

8.7 Parallel Options
The parallel input options section starts with the −−parallel directive, followed by a
series of parallel options.

Cache

Syntax −cache #

Description Size of the cache memory (in bytes).

Parameters # Cache size.

Examples −cache 1000

Table 8.21: Parallel cache option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 57

Rank

Syntax [{-rank #rank | -all.ranks} {-threads | -parts | -load | -read.threads}
# ]...

Description Define how many OpenMP threads will be open on each rank.

Parameters

#rank Rank number.

-threads Number of threads for the current rank.

-all.ranks Means that all subsequent options hold for all
the ranks.

-threads Sets the number of solver threads on a specific
(or all) rank.

-read.threads Use when memory is insufficient to read all
the part in parallel (a significant amount of
memory is needed to read a zone part, that is
deallocated at the end of the read).

-parts Number of partitions.

-load Changes the load of a rank, by default all
ranks have load 1.

# Load level for the current rank.

Examples −rank 1 -threads 1

-rank 2 -threads 8

-all.ranks -threads 48

-rank 2 -load 4

Table 8.22: Parallel rank option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 58

8.8 Equation of State Options
The “Equation of State” input options sections start with the −−equation.of.state
directive, followed by a series of equation.of.state input options. Each section is
used to declare a specific fluid with its equation of state and constitutive laws (e.g.’
Sutherland’s law). There could be more than one section, one per fluid type. It is
first assigned a name to be used by the user. The current version of Arion provides
the means to solve only a single fluid and therefore only a single equation of state is
concurrently supported. If nothing is set then the default ideal gas parameters of air
are used.

Name

Syntax −name $fluid

Description Name of flow medium.

Parameters $fluid Flow medium.

Examples −name air

Table 8.23: equation.of.state name option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 59

Type

Syntax −type $eos.type.fluid

Description Choose the type of equation of state. Available type: eos.ideal.gas
(see Section 2.2.3 and Equation 2.10)

Parameters $eos.type.fluid Type of equation of state.

Examples −type eos.ideal.gas

Table 8.24: equation.of.state type option

R

Syntax −R #

Description Set the specific gas constant. Default is 287.22 (air).

Parameters # Specific gas constant.

Examples −R 287.22

Table 8.25: equation.of.state R option

Gamma

Syntax −gamma #

Description Set the heat capacity ratio (γ). Default is 1.4 (air).

Parameters # Heat capacity ratio.

Examples −gamma 1.4

Table 8.26: equation.of.state gamma option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 60

Ref

Syntax −ref.$ #

Description Sets reference properties. These reference values are relevant in
particular for the limiters.

Parameters

-ref.p Reference pressure. Default is 1.

-ref.T Reference temperature. Default is 1.

-ref.length Reference length. Default is 1.

# Reference value.

Examples −ref.p 101325

-ref.length 0.5

Table 8.27: equation.of.state ref option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 61

8.9 Molecular
The “Molecular” input options sections start with the−−molecular directive, followed
by a series of molecular input options. Each section is used to declare specific type
or constants for Sutherland’s law. The Sutherland formulae can be set in two ways:
The fist way, called molecular.sutherland.air.1, is direct coefficients for µ and κ (see
Equation 2.12)

Name

Syntax −name $name

Description Set the name of the molecular thermodynamic relations.

Parameters $name Name of molecular thermodynamic relations.

Examples −name therm1

Table 8.28: Molecular name option

Type

Syntax −type $type

Description Set the type of the molecular thermodynamic relations.
Available types are: molecular.sutherland.air.1 and molecu-
lar.sutherland.air.2 (see Section 2.2.4, Equation 2.12).

Parameters $type Type of the molecular thermodynamic rela-
tions.

Examples −type molecular.sutherland.air.1

Table 8.29: molecular type option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 62

Mu1

Syntax −Mu1 #Cmu1

Description Sets the first coefficient for the Sutherland molecular viscosity for-
mula; Default is 1.458e-06 (air, see Equation 2.12 and Table 2.1).

Parameters #Cmu1 First coefficient for the Sutherland formula

Examples −Mu1 1.458e-06

Table 8.30: Molecular Mu1 option

Mu2

Syntax −Mu2 #Cmu2

Description Sets the second coefficient for the Sutherland molecular viscosity
formula; Default is 110.3 (air, see Equation 2.12 and Table 2.1).

Parameters #Cmu2 Second coefficient for the Sutherland formula

Examples −Mu2 110.3

Table 8.31: Molecular Mu2 option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 63

Ka1

Syntax −Ka1 #Cka1

Description Sets the first coefficient for the Sutherland thermal conductivity
formula; Default is 2.495e-03 (air, see Equation 2.12 and Table 2.1).

Parameters #Cka1 First coefficient for the Sutherland formula

Examples −Ka1 2.495e-03

Table 8.32: Molecular Ka1 option

Ka2

Syntax −Ka2 #Cka2

Description Sets the second coefficient for the Sutherland heat conductivity
formula; Default is 194.0 (air, see Equation 2.12 and Table 2.1).

Parameters #Cka2 Second coefficient for the Sutherland formula

Examples −Ka2 194.0

Table 8.33: Molecular Ka2 option

Eta0

Syntax −Eta0 #Eta0

Description Sets η0 for the Sutherland molecular viscosity formula; Default is
1.827× 10−5 (air, see Equation 2.13 and Table 2.2).

Parameters #Eta0 Coefficient for the Sutherland formula

Examples −Eta0 1.827× 10−5

Table 8.34: Molecular Eta0 option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 64

C0

Syntax −C0 #C0

Description Sets C0 for the Sutherland molecular viscosity formula; Default is
120 (air, see Equation 2.13 and Table 2.2).

Parameters #C0 Coefficient for the Sutherland formula

Examples −C0 120

Table 8.35: Molecular C0 option

T0

Syntax −T0 #T0

Description Sets T0 for the Sutherland molecular viscosity formula; Default is
291.15 (air, see Equation 2.13 and Table 2.2).

Parameters #T0 Coefficient for the Sutherland formula

Examples −T0 291.15

Table 8.36: Molecular T0 option

Prandtl

Syntax −Prandtl #Prandtl

Description Sets the Prandtl number; Default is 0.72 (air, see Equation 2.13
and Table 2.2).

Parameters #Prandtl Prandtl number

Examples −Prandtl 0.72

Table 8.37: Molecular Prandtl option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 65

8.10 BC Options
Boundary conditions are set for each boundary cell, based on the name that has
been assigned by the user (see Chapter 6). For each name, representing a group of
boundary cells, the boundary conditions are set in two steps. First, assign the name,
and second, assign the type. Each group starts with the −−bc directive, followed by
the name and type as follows:.

Name

Syntax −name $name

Description Name of the boundary as set in Pointwise.

Parameters $name Name of boundary.

Examples −name WALL

Table 8.38: BC name option

Type

Syntax −type $type

Description Type of boundary condition. See Chapter 5 and Table 8.40 for
available types.

Parameters $type Type of boundary condition.

Examples −type noslip.wall

Table 8.39: BC type option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 66

Boundary Condition Types

BC type Description (see Chapter 5 for details)

impermeable.wall Impermeable wall.

noslip.wall No slip wall.

automatic.wall.functionAutomatic wall function.

nichols.wall.function Nichols type wall function.

riemann Riemann type outer boundary conditions.

riemann.inlet Riemann type inlet boundary conditions.

riemann.outlet Riemann type outlet boundary conditions.

turkel Turkel type outer boundary conditions.

turkel.inlet Turkel type inlet boundary conditions.

turkel.outlet Turkel type outlet boundary conditions.

inlet Inlet type outer boundary conditions.

outlet outlet type outer boundary conditions.

inout Inout outer boundary conditions.

extrap Zero order extrapolation.

fixed Fixed boundary conditions.

symmetry Symmetry type conditions.

2d Two dimensional domain conditions.

Table 8.40: Boundary condition types

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 67

Log

Syntax −log $log [log-options] ...

Description Report in log file. See Table 8.42 for log options list.

Parameters $log Log name.

Examples −log coefficients cl cd

Table 8.41: Boundary conditions log option

BC Log Options

Log type Description

wet.surface Wet surface area.

p.center.x Center of pressure x coordinate.

p.center.y Center of pressure x coordinate.

p.center.z Center of pressure x coordinate.

p.center.xFy Center of pressure x coordinate.

p.center.xFz Center of pressure x coordinate.

p.center.yFx Pressure center sum(y * dFx) / Fx coordinate.

p.center.yFz Pressure center sum(y * dFz) / Fz coordinate.

p.center.zFx Pressure center sum(z * dFx) / Fx coordinate.

p.center.zFy Pressure center sum(z * dFy) / Fy coordinate .

fx X coordinate direction force.

fy Y coordinate direction force.

fz Z coordinate direction force.

fx.pressure Force in x direction due to pressure.

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 68

fy.pressure Force in y direction due to pressure.

fz.pressure Force in z direction due to pressure.

fx.friction Force in x direction due to friction.

fy.friction Force in y direction due to friction.

fz.friction Force in z direction due to friction.

lift Lift force.

drag Drag force.

mx Moment about X coordinate direction.

my Moment about Y coordinate direction.

mz Moment about Z coordinate direction.

cfx X coordinate direction force coefficient.

cfy Y coordinate direction force coefficient.

cfz Z coordinate direction force coefficient.

cmx Moment coefficient about X coordinate direction.

cmy Moment coefficient about Y coordinate direction.

cmz Moment coefficient about Z coordinate direction.

cl Lift coefficient.

cd Drag coefficient.

Table 8.42: BC log options

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 69

8.10.1 Wall Distance Calculations

The following directives pertain to wall type boundary conditions. Normally, one
would like to calculate wall distance based on whether a specific boundary has been
assigned wall conditions. However, sometimes it is required to override this default.
Note that the wall distance is used only for turbulence models that require wall
distance. The following two directives are exactly for that. They should be used
along with a wall boundary condition.

Wall.distance

Syntax −wall.distance

Description Explicitly set wall distance search for a specific boundary. Default:
for all walls.

Parameters N/A

Examples −wall.distance

Table 8.43: BC wall.distance option

No.wall.distance

Syntax −no.wall.distance

Description Explicitly disable wall distance search for a specific boundary. De-
fault: for all boundaries other than walls.

Parameters N/A

Examples −no.wall.distance

Table 8.44: BC no.wall.distance option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 70

8.10.2 Freestream Conditions Override

Mach

Syntax −Mach #M

Description Override the freestream Mach number.

Parameters #M Freestream Mach number.

Examples −Mach 0.95

Table 8.45: BC Mach option

Velocity.magnitude

Syntax −velocity.magnitude #V

Description Override the freestream velocity [m/s].

Parameters #V Freestream velocity [m/s].

Examples −velocity.magnitude 200

Table 8.46: BC velocity.magnitude option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 71

Alpha

Syntax −alpha #aoa

Description Override the freestream angle of attack [degrees].

Parameters #aoa Freestream angle of attack [degrees].

Examples −alpha 5

Table 8.47: BC alpha option

Beta

Syntax −beta #beta

Description Override the freestream side slip angle [degrees].

Parameters #beta Freestream side slip angle [degrees].

Examples −beta 3

Table 8.48: BC beta option

U

Syntax −u #u

Description Override the freestream x coordinate direction velocity [m/s].

Parameters #u Freestream x coordinate direction velocity
[m/s].

Examples −u 150

Table 8.49: BC u option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 72

V

Syntax −v #v

Description Override the freestream y coordinate direction velocity [m/s].

Parameters #v Freestream y coordinate direction velocity
[m/s].

Examples −v 20

Table 8.50: BC v option

W

Syntax −w #w

Description Override the freestream z coordinate direction velocity [m/s].

Parameters #w Freestream z coordinate direction velocity
[m/s].

Examples −w 10

Table 8.51: BC w option

T

Syntax −T #T

Description Override the freestream temperature [K].

Parameters #T Freestream temperature [K].

Examples −T 300

Table 8.52: BC T option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 73

p

Syntax −p #p

Description Override the freestream pressure [Pa].

Parameters #p Freestream pressure [Pa].

Examples −p 105000

Table 8.53: BC p option

Trb.intensity

Syntax −trb.intensity #ti

Description Override the freestream turbulent intensity (in absolute fraction,
not percentage).

Parameters #ti Freestream turbulent intensity (in absolute
fraction, not percentage). Default is 0.001.

Examples −trb.intensity 0.01

Table 8.54: BC trb.intensity option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 74

8.11 System Options
A system refers to a “System of Equations,” e.g., Euler or Reynolds Averaged Navier-
Stokes equations. Other examples may include, turbulence model equations or various
physical model equations (not included in the current revision of the code). Each
system starts with the directive −−system, followed by a series of options.

Certain systems require that an additional, complimentary system would be de-
fined. For example, when simulating turbulent flows it is required to define a mean
flow system that is consistent with the turbulence model selected and a second system
to solve the actual turbulence model equations.

Type

Syntax −type $type

Description Type of equation set to be solved.

Parameters $type Type of equation set. See Table 8.56 for equa-
tion system types.

Examples −type ideal.gas.mf.inviscid

−type ideal.gas.mf.tnt

−type turbulent.kw.sst

Table 8.55: System type option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 75

System Types

System type Description

ideal.gas.mf.inviscid Solve the Euler equations assuming inviscid, ideal gas
flow.

ideal.gas.mf.viscous Solve the Navier-Stokes equations assuming laminar
ideal gas flow.

ideal.gas.mf.tnt Solve the Navier-Stokes equations assuming turbulent
ideal gas flow (using the k−ω-TNT turbulence model).
This assumes an additional system for solving the k−ω-
TNT turbulence model equations.

ideal.gas.mf.sst Solve the Navier-Stokes equations assuming turbulent
ideal gas flow (using the k − ω-SST turbulence model).
This assumes an additional system for solving the k−ω-
SST turbulence model equations.

turbulent.kw.tnt Solve the k − ω-TNT turbulence model equations.

turbulent.kw.sst Solve the k − ω-SST turbulence model equations.

Table 8.56: System types

Cell.gradient

Syntax −cell.gradient $method

Description Method to calculate the cell center gradient that is required for
high order approximations.

Parameters
$method Method for cell gradient calculation. See Ta-

ble 8.58 for a list of available cell gradient
methods.

Examples −cell.gradient green.gauss.node

Table 8.57: System cell.gradient option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 76

Cell Gradient Types

Cell Gradient type Description

green.gauss.node Calculate cell gradient based on the Green-Gauss The-
orem using node reconstruction (default).

green.gauss.cell Calculate cell gradient based on the Green-Gauss The-
orem using cell center reconstruction.

least.square.1 Calculate cell gradient based on least square approxima-
tions using r (the distance) as the weight.

least.square.1.5 Calculate cell gradient based on least square approxima-
tions using r1.5 as the weight.

least.square.2 Calculate cell gradient based on least square approxima-
tions using r2 as the weight.

Table 8.58: Cell gradient types

Face.gradient

Syntax −face.gradient $method

Description Method to calculate the face gradient that is required for viscous
fluxes calculations.

Parameters
$method Method for face gradient calculation. See Ta-

ble 8.60 for a list of available face gradient
methods.

Examples −face.gradient diamond

Table 8.59: System face.gradient option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 77

Face Gradient Types

Face Gradient type Description

diamond Calculate face gradient based on the Green-Gauss The-
orem using a diamond-like shape (default).

thin.layer Calculate face gradient based on the thin layer assump-
tion.

hasselbacher Calculate face gradient based on defect correction by
Hasselbacher.

Table 8.60: Face gradient types

Limiter

Syntax −limiter $limiter

Description Type of limiter.

Parameters $limiter Type of limiter. See Table 8.62 for limiter
types.

Examples −limiter venka.2d

Table 8.61: Limiter option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 78

Limiter Types

Limiter type Description

none No limiter.

1st First order.

venka.2d Venkatakrishnan limiter (2D domain).

venka.3d Venkatakrishnan limiter (3D domain).

mlp.2d MLP-u2 limiter (2D domain).

mlp.3d MLP-u2 limiter (3D domain).

Table 8.62: Limiter types

Venka.k

Syntax −venka.k #k

Description Change the Venkatakrishnan limiter coefficient. Default is 5.

Parameters #k Venkatakrishnan limiter coefficient.

Examples −venka.k 5

Table 8.63: System venka.k option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 79

Time.step

Syntax −time.step #initial #iterations {cfl.linear | cfl.exponential |
cfl.tangential | dt.linear | dt.exponential | dt.tangential } #final

Description Sets the CFL number or time step (first order single time stepping).

Parameters

#initial Initial CFL number or time step.

#iterations Number of iteration for which the CFL number or
time step grows from #initial to #final.

cfl.linear Linear growth of the CFL number.

cfl.exponential Exponential growth of the CFL number.

cfl.tangential Hyperbolic tangent growth of the CFL number.

dt.linear Linear growth of the time step.

dt.exponential Exponential growth of the time step.

dt.tangential Hyperbolic tangent growth of the time step.

#final Final CFL number or time step.

Examples −time.step 5 50 cfl.linear 10

Table 8.64: System CFL option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 80

Implicit.jacobi

Syntax −implicit.jacobi

Description Use Jacobi instead of the default Gauss-Seidel.

Parameters N/A

Examples −implicit.jacobi

Table 8.65: System implicit.jacobi option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 81

Convection.noslip.diagonal

Syntax −convection.noslip.diagonal {normal | analytic | implicit.on.noslip}

Description Selects the way the diagonal convective jacobian is estimated on
no-slip boundaries.

Parameters

normal The inviscid diagonal is evaluated directly based
on the scheme.

analytic Use analytical Jacobian

implicit.on.noslipImplicit treatment of wall boundary conditions
through the Jacobian.

Examples −convection.noslip.diagonal analytic

Table 8.66: System convection.noslip.diagonal option

Convection.impermeable.diagonal

Syntax −convection.impermeable.diagonal {normal | analytic | im-
plicit.on.noslip}

Description Selects the way the diagonal convective jacobian is estimated on
impermeable boundaries.

Parameters

normal The inviscid diagonal is evaluated directly based
on the scheme.

analytic Use analytical Jacobian

implicit.on.noslipImplicit treatment of wall boundary conditions
through the Jacobian.

Examples −convection.impermeable.diagonal analytic

Table 8.67: System convection.impermeable.diagonal option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 82

Convection.symmetry.diagonal

Syntax −convection.symmetry.diagonal {normal | analytic | im-
plicit.on.noslip}

Description Selects the way the diagonal convective jacobian is estimated on
symmetry boundaries.

Parameters

normal The inviscid diagonal is evaluated directly based
on the scheme.

analytic Use analytical Jacobian

implicit.on.noslipImplicit treatment of wall boundary conditions
through the Jacobian.

Examples −convection.symmetry.diagonal analytic

Table 8.68: System convection.symmetry.diagonal option

Realizability.trb.w

Syntax −realizability.trb.w

Description Adds realizability condition for omega (applies only to k − ω-SST
turbulence model).

Parameters N/A

Examples −realizability.trb.w

Table 8.69: System realizability.trb.w option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 83

Source.mpk

Syntax −source.mpk #mpk

Description Limit turbulence model production (applies only to k−ω turbulence
models).

Parameters #mpk Upper limit for production term.

Examples −source.mpk 5

Table 8.70: System source.mpk option

Damp

Syntax −damp #damp-factor

Description Set damping to the convection Jacobian. Values that are less than
unity increase stability. Not recommended for turbulence model
equations. The recommended damping factor is 0.5-1.0. Default is
1.

Parameters #damp-factor Damping factor.

Examples −damp 0.75

Table 8.71: System damp option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 84

Relax

Syntax −relax #relax-factor

Description Set relaxation to the solution increment. The recommended relax-
ation factor is 0.5-1.0. Default is 1.

Parameters #relax-factor Relaxation factor.

Examples −relax 0.75

Table 8.72: System relaxation option

iteration.convergence

Syntax −iteration.convergence #criterion

Description Set the convergence criterion (log(Res/Res0)), default is ignored.
For unsteady flows this would be the convergence of the whole sim-
ulation. For dual time this would be convergence of the iterations.

Parameters #criterion Convergence criterion in terms of [log(Res/Res0)].

Examples −iteration.convergence -5

Table 8.73: System iteration.convergence option

2d.tolerance

Syntax −2d.tolerance #tolerance

Description Tolerance for two-dimensional detection.

Parameters #tolerance Set the tolerance.

Examples −2d.tolerance 1e-8

Table 8.74: System 2d.tolerance option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 85

Log

Syntax −log $log [log-options] ...

Description Report in log file. See Table 8.76 for log options list.

Parameters $log Log name.

Examples −log coefficients cl cd

Table 8.75: System log option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 86

System Log Options

Log type Description

cfl System CFL.

dt System ∆t.

time Time.

residual System residual.

log.residual System log of the residual.

minimal.timestep Minimal time step.

orig(minimal.timestep) Minimal time step original cell index.

cell(minimal.timestep) Minimal time step zonal cell index.

zone(minimal.timestep) Minimal time step zone index.

orig(res) Max residual original cell number.

cell(res) Max residual zonal cell number.

zone(res) Max residual zone number.

max(mt) Max of the turbulence viscosity (where applicable).

cell(mt) Max turbulent viscosity cell number (where applicable).

zone(mt) Max turbulent viscosity zone number (where applica-
ble).

Table 8.76: System log options

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 87

Plot

Syntax −plot $plot [plot-options] ...

Description Functions to include in FV-UNS file. See Table 8.78 for plot func-
tions list.

Parameters $plot Plot name.

Examples −plot NACA0012 r p velocity residual

Table 8.77: System plot option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 88

Plot Functions

Plot functions Description

residual Residual field.

relax Relaxation field.

velocity Velocity vector field (where applicable).

{u | v | w } Velocity vector field components (scalars,
where applicable).

r Density field (where applicable).

p Pressure field (where applicable).

Cp Pressure coefficient (where applicable).

Cf Skin-friction coefficient (where applicable).

T Temperature field (where applicable).

{lim.r | lim.p | lim.u | lim.v | lim.w} Limiter fields (where applicable).

wall.distance Wall distance field (where applicable).

mt Turbulent viscosity field (where applicable).

trb.k Turbulent kinetic energy field (where appli-
cable).

trb.w Turbulent specific dissipation rate field
(where applicable).

{trb.lim.k | trb.lim.w} Turbulence model limiters (where applica-
ble).

yplus y+ (where applicable).

Tw Magnitude of τ̄wall (where applicable).

Tw.vec The vector τ̄wall (where applicable).

Tw{x | y | z } X | Y | Z direction component of τ̄wall.

Table 8.78: Plot functions
Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 89

8.12 Solve Options
The solve input options section starts with the −−solve directive, followed by a series
of solve options.

Convection.flux

Syntax −convection.flux $method

Description Set the convection flux approximation method.

Parameters $method Flux approximation method. See Table 8.80
for available convection flux types.

Examples −convection.flux hllc.roe

Table 8.79: Solve convection.flux option

Convection Flux Types

Convection flux type Description

hllc.roe HLLC Roe.

hllc.davis HLLC Davis.

ausm AUSM.

ausm.up AUSM+-up

ausm.dv AUSM-DV

Table 8.80: Convection flux types

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 90

Convection.jacobian

Syntax −convection.jacobian $jacobian

Description Set the convection Jacobian. See Table 8.82 for available convection
Jacobian types.

Parameters $jacobian Jacobian.

Examples −convection.jacobian hllc.roe

Table 8.81: Solve convection.jacobian option

Convection Jacobian Types

Convection Jacobian type Description

hllc.roe HLLC Roe.

hllc.davis HLLC Davis.

van.leer van Leer.

rossow.low.mach Low Mach number Rossow.

matrix.free Matrix free.

Table 8.82: Convection Jacobian types

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 91

Spatial.order

Syntax −spatial.order #

Description Set the convection flux spatial order. Available options are either 1
for first order or 2 for second order.

Parameters # Convection flux approximation order.

Examples −spatial.order 2

Table 8.83: Solve spatial.order option

Sweeps

Syntax −sweeps #

Description Set the number of sweeps within an iteration.

Parameters # Number of sweeps. Can be any even number.
Default is 6.

Examples −sweeps 4

Table 8.84: Solve sweeps option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 92

Time.march

Syntax −time.march $method

Description Set the time marching method. See Table 8.86 for a list of available
time marching methods.

Parameters $method Time marching method.

Examples −time.march implicit.pgs

Table 8.85: Solve time.march option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 93

Time Marching Methods

Time marching method Description

explicit.euler Explicit Euler time marching scheme.

explicit.rk3 Third order Runge-Kutta explicit time marching
scheme.

explicit.rk4 Fourth order Runge-Kutta explicit time marching
scheme.

implicit.pgs Implicit point Gauss-Seidel time marching scheme.

implicit.b2.pgs Second order implicit B2 time marching scheme.

implicit.heun.R.pgs Second order Runge-Kutta implicit point Gauss-Seidel
time marching scheme.

implicit.rk3.R.pgs Third order Runge-Kutta implicit point Gauss-Seidel
time marching scheme.

implicit.rk4.R.pgs Fourth order Runge-Kutta implicit point Gauss-Seidel
time marching scheme.

implicit.rk5.R.pgs Fifth order Runge-Kutta implicit point Gauss-Seidel
time marching scheme.

implicit.rk3.R.petsc Krylov-based Implicit (Runge-Kutta R, 3rd order).

implicit.rk4.R.petsc Krylov-based Implicit (Runge-Kutta R, 4th order).

implicit.b2.petsc Krylov-based Implicit (B2).

Table 8.86: Time marching methods

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 94

Iterations

Syntax −iterations #

Description Set the number of iterations. For unsteady flows this would be the
number of iterations of the whole simulation. For dual time this
would be the maximum iterations of the current time step.

Parameters # Number of iterations.

Examples −iterations 1000

Table 8.87: Solve iterations option

Time.step.reduction

Syntax −time.step.reduction #attempts

Description Set time the number of consecutive CFL reduction attempts when
non-physical values are detected in the solution.

Parameters #attempts Number of attempts.

Examples −time.step.reduction 3

Table 8.88: Solve time.step.reduction option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 95

Dual.time

Syntax −dual.time #steps #time-step

Description Set dual time stepping simulation.

Parameters
#steps Number of physical time steps.

#time-step Physical time step (∆t).

Examples −dual.time 200 0.0001

Table 8.89: Solve dual.time option

Global.minimal.timestep

Syntax −global.minimal.timestep

Description Forces all the cells to use the global minimal time step that was
calculated.

Parameters N/A

Examples −global.minimal.timestep

Table 8.90: Solve global.minimal.timestep option

Save

Syntax −save #

Description Set the intermittency of output of restart files.

Parameters # Number of steps between output.

Examples −save 10

Table 8.91: Solve save option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 96

Save.path

Syntax −save.path $path

Description Set the path for output of log and restart files.

Parameters $path Path of log and restart files.

Examples −save.path ./save/

Table 8.92: Solve save.path option

Save.sequential

Syntax −save.sequential

Description Adds iteration signature to the saves.

Parameters N/A

Examples −save.sequential

Table 8.93: Solve save.sequential option

Load.path

Syntax −load.path $path

Description Set the path for restart files.

Parameters $path Path of restart files.

Examples −load.path ./load/

Table 8.94: Solve load.path option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 97

Load.sequence

Syntax −load.sequence #iteration

Description Load a specific iteration.

Parameters #iteration Iteration for load.

Examples −load.sequence 1000

Table 8.95: Solve load.sequence option

EOS

Syntax −eos $eos

Description Set the equation of state.

Parameters $eos Equation of state. Currently, only perfect
gases are supported.

Examples −eos air

Table 8.96: Solve eos option

Molecular

Syntax −molecular $molecular

Description Set the name of the molecular viscosity and thermal conductivity
to use.

Parameters $molecular Molecular relations name.

Examples −molecular air-suther

Table 8.97: Solve molecular option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 98

P

Syntax −p #

Description Set the free stream pressure.

Parameters # Free stream pressure.

Examples −p 101325

Table 8.98: Solve p option

T

Syntax −T #

Description Set the free stream temperature.

Parameters # Free stream temperature.

Examples −p 288

Table 8.99: Solve T option

Mach

Syntax −Mach #

Description Set the free stream Mach number.

Parameters # Free stream Mach number.

Examples −Mach 0.8

Table 8.100: Solve Mach option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 99

Velocity.magnitude

Syntax −velocity.magnitude #

Description Set the free stream velocity magnitude.

Parameters # Free stream velocity magnitude.

Examples −velocity.magnitude 200

Table 8.101: Solve velocity magnitude option

U

Syntax −u #

Description Set the free stream X coordinate direction velocity component.

Parameters # Free stream X coordinate direction velocity
component.

Examples −u 200

Table 8.102: Solve u option

V

Syntax −v #

Description Set the free stream Y coordinate direction velocity component.

Parameters # Free stream Y coordinate direction velocity
component.

Examples −v 0

Table 8.103: Solve v option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 100

W

Syntax −w #

Description Set the free stream Z coordinate direction velocity component.

Parameters # Free stream Z coordinate direction velocity
component.

Examples −w 20

Table 8.104: Solve w option

Alpha

Syntax −alpha #

Description Set the free stream angle of attack.

Parameters # Free stream angle of attack in degrees.

Examples −alpha 10

Table 8.105: Solve alpha option

Beta

Syntax −beta #

Description Set the free stream side slip angle.

Parameters # Free stream side slip angle in degrees.

Examples −beta 0

Table 8.106: Solve beta option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 101

Trb.intensity

Syntax −trb.intensity #

Description Set the free stream turbulence intensity.

Parameters # Free stream turbulence intensity (in absolute
fraction, not percentage).

Examples −trb.intensity 0.01

Table 8.107: Solve trb.intensity option

Trb.mt

Syntax −trb.mt #mt

Description Set the free stream turbulence viscosity.

Parameters
#mt Free stream turbulence viscosity (in absolute

fraction from the molecular viscosity, not per-
centage).

Examples −trb.mt 0.01

Table 8.108: Solve trb.mt option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 102

Reference.mach.trb

Syntax −reference.mach.trb #ref

Description Set the reference Mach number for the turbulence model (used to
override the freestream Mach number).

Parameters #ref Freestream Mach number.

Examples −reference.mach.trb 0.7

Table 8.109: Solve reference.mach.trb option

Reference.velocity.trb

Syntax −reference.velocity.trb #ref

Description Set the reference velocity for the turbulence model (used to override
the freestream velocity).

Parameters #ref Freestream velocity [m/s].

Examples −reference.velocity.trb 210

Table 8.110: Solve reference.velocity.trb option

Reference.mach

Syntax −reference.mach #ref

Description Set the reference Mach number. Default is the mean flow free
stream Mach number.

Parameters #ref Reference Mach number.

Examples −reference.mach 0.75

Table 8.111: Solve reference.mach option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 103

Reference.velocity

Syntax −reference.velocity #ref

Description Set the reference velocity. Default is the mean flow free stream
velocity.

Parameters #ref Reference velocity.

Examples −reference.velocity 300

Table 8.112: Solve reference.velocity option

Reference.longitudinal

Syntax −reference.longitudinal #ref

Description Set the reference length for Reynolds number evaluation. Unused
by the current version.

Parameters #ref Reference length.

Examples −reference.length 1.5

Table 8.113: Solve reference.length option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 104

Ref

Syntax −ref.$ # { # # }

Description Set the reference length, area, and reference point for force and
moment coefficient calculations.

Parameters

-reference.area Reference area (scalar).

-reference.len Reference length (vector).

-reference.point Reference point (vector).

# Reference value.

Examples −reference.len 0.325 0.1 0.325

−reference.point 1 0 0

Table 8.114: Solve ref option

Plot

Syntax −plot [plot-options] ...

Description Add to the fvuns file. See Table 8.116 for plot options list.

Parameters N/A

Examples −plot rank owner orig

Table 8.115: Solve plot option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 105

Solve Plot Options

Log type Description

rank Add the rank to the fvuns plot file.

part Add the part to the fvuns plot file.

owner Add ownership to the fvuns plot file.

orig Add original node index to the fvuns plot file.

Table 8.116: Solve plot options

Log

Syntax −log $log [log-options] ...

Description Report in log file. See Table 8.118 for log options list.

Parameters $log Log name.

Examples −log progress-logs iter step time

Table 8.117: Solve log option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 106

Solve Log Options

Log type Description

iter Iteration number.

step Step number.

pos Position # (iteration for steady state, step for dual time
simulation).

time Physical time for dual time simulation.

exec.time Cumulative execution time.

iter.avg.time iteration average time.

iteration.time Iteration time.

step.time Step time.

petsc.mem.usage Petsc memory usage in mebibyte.

petsc.mem.malloc Petsc memory malloc in mebibyte.

Table 8.118: Solve log options

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 107

Wall.distance

Syntax −wall.distance {exact [#fx #fy #fz #cx #cy #cz]} | {quick [#fx
#fy #fz]}

Description Set the wall distance algorithm, fx, fy, fz determine the bound-
ary division allocation (surface) while cx, cy, cz determine the cell
division allocation (volume).

Parameters

exact Exact wall distance calculation.

quick Use the quick algorithm.

#fx #fy #fz Number of division of surface faces in x, y, and,
z directions.

#cx #cy #cz Number of division of volume cells in x, y, and,
z directions.

Examples −wall.distance exact

Table 8.119: Solve wall distance option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 108

8.13 PETSc Toolkit
PETSc, the Portable, Extensible Toolkit for Scientific Computation is a suite of data
structures and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. PETSc is developed as open-source.

The PETSc input option section starts with the −−petsc directive, followed by a
series of petsc options. For advanced usage of the PETSc package the user is referred
to the command line help or the online PETSc manual.

Israeli Computational Fluid Dynamics Center LTD

https://petsc.org
https://petsc.org/release/docs/manual/


Input File, Run Preparation, and Execution 109

8.14 UNS Options
The UNS input options section start with the −−uns directive, followed by a series
of uns options.

Name

Syntax −name $name

Description Name of flow case.

Parameters $name Flow case name.

Examples −name naca0012_laminar

Table 8.120: UNS name option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 110

Prefix

Syntax {−prefix | −prefix.starcd | −prefix.cgns} $prefix

Description Set prefix of the flow case.

Parameters

prefix Used for manual conversion (conversion and
decomposition has been conducted using
star2metis or cgns2metis).

prefix.starcd Use original Star-CD export grid files (conver-
sion and decomposition is conducted).

prefix.cgns Use original CGNS export grid files (conver-
sion and decomposition is conducted).

$prefix Prefix of flow case.

Examples −prefix ./naca0012/NACA0012-Str-Laminar-Rey500

Table 8.121: UNS prefix option

Key

Syntax −key $prefix

Description Save/load a key file. The file contains pre-calculated wall distance.
If the file exists, the code reads it prior to execution. If the file does
not exist, the code generates one.

Parameters $prefix Prefix of the key file.

Examples −key ./NACA0012-Str-Laminar-Rey500

Table 8.122: UNS key option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 111

Scale

Syntax −scale #x #y #z

Description Scale the grid.

Parameters

#x Scale in the x direction.

#y Scale in the y direction.

#z Scale in the z direction.

Examples −scale 0.001 0.001 0.001

Table 8.123: UNS scale option

Log

Syntax −log $log [log-options] ...

Description Report in log file. See Tables 8.125 and 8.133 for log options list.

Parameters $log Log name.

Examples −log coefficients cl cd

Table 8.124: UNS log option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 112

UNS Log Options

Log type Description

wet.surface Wet surface area.

p.center.x Center of pressure x coordinate.

p.center.y Center of pressure x coordinate.

p.center.z Center of pressure x coordinate.

p.center.xFy Center of pressure x coordinate.

p.center.xFz Center of pressure x coordinate.

p.center.yFx Pressure center sum(y * dFx) / Fx coordinate.

p.center.yFz Pressure center sum(y * dFz) / Fz coordinate.

p.center.zFx Pressure center sum(z * dFx) / Fx coordinate.

p.center.zFy Pressure center sum(z * dFy) / Fy coordinate .

fx X coordinate direction force.

fy Y coordinate direction force.

fz Z coordinate direction force.

fx.pressure Force in x direction due to pressure.

fy.pressure Force in y direction due to pressure.

fz.pressure Force in z direction due to pressure.

fx.friction Force in x direction due to friction.

fy.friction Force in y direction due to friction.

fz.friction Force in z direction due to friction.

lift Lift force.

drag Drag force.

mx Moment about X coordinate direction.

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 113

my Moment about Y coordinate direction.

mz Moment about Z coordinate direction.

cfx X coordinate direction force coefficient.

cfy Y coordinate direction force coefficient.

cfz Z coordinate direction force coefficient.

cmx Moment coefficient about X coordinate direction.

cmy Moment coefficient about Y coordinate direction.

cmz Moment coefficient about Z coordinate direction.

cl Lift coefficient.

cd Drag coefficient.

Table 8.125: UNS log options

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 114

8.14.1 Motion: DOF Options

This section describes the directive to control motion. The current version of Arion
supports a user prescribed motion only. The motion can be prescribed as a constant
motion, a harmonic motion, or a motion prescribed using a discrete table. Table
values can be loaded from a separate text file using a file directive. If a discrete
table is utilized, the values of the table are interpolated as required.

DOF Angular Motion

Syntax {−dof.angular.roll.rate.motion | −dof.angular.pitch.rate.motion |
−dof.angular.yaw.rate.motion} {rad | deg} {#rate [sin #amplitude
#frequency #shift] | table.t [#t0 #v0 #t1 #v1 ... #tN #vN | file
#filename ] table.end}

Description Set angular rate motion where rate = #rate + #amplitude *
cos(#frequency * t + #shift).

Parameters

rad Set rate in radians per second.

deg Set rate in degrees per second.

#rate Angular rate.

#amplitude Oscillation amplitude.

#frequency Oscillation frequnecy.

#shift Oscillation phase shift.

#t0 #t1 ... #tN Discrete time.

#v0 #v1 ... #vN Discrete rate.

Examples −dof.angular.roll.rate.motion deg 5

Table 8.126: UNS DOF angular rate motion option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 115

DOF Velocity Motion

Syntax −dof.velocity.motion {#u #v #w | table.t [#t0 #u0 #v0 #w0 #t1
#u1 #v1 #w1 ... #tN #uN #vN #wN | file #filename ] table.end}

Description Set motion velocity components.

Parameters

#u X coordinate direction velocity component.

#v Y coordinate direction velocity component.

#w Z coordinate direction velocity component.

#t0 #t1 ... #tN Discrete time.

#u0 #u1 ... #uN Discrete velocity.

#v0 #v1 ... #vN Discrete velocity.

#w0 #w1 ... #wN Discrete velocity.

Examples −dof.velocity.motion 100 0 0

Table 8.127: UNS DOF velocity motion option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 116

DOF Acceleration Motion

Syntax −dof.acceleration.motion {#u #v #w | table.t [#t0 #ax0 #ay0
#az0 #t1 #ax1 #ay1 #az1 ... #tN #axN #ayN #azN | file #file-
name ] table.end}

Description Set motion acceleration components.

Parameters

#ax X coordinate direction acceleration
component.

#ay Y coordinate direction acceleration
component.

#az Z coordinate direction acceleration
component.

#t0 #t1 ... #tN Discrete time.

#ax0 #ax1 ... #axN Discrete acceleration.

#ay0 #ay1 ... #ayN Discrete acceleration.

#az0 #az1 ... #azN Discrete acceleration.

Examples −dof.acceleration.motion 0 0 10

Table 8.128: UNS DOF acceleration motion option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 117

DOF Angular Init

Syntax {−dof.angular.roll.rate.init | −dof.angular.pitch.rate.init |
−dof.angular.yaw.rate.init} {rad | deg} #rate

Description Set initial value of angular rate.

Parameters

rad Set rate in radians per second.

deg Set rate in degrees per second.

#rate Angular rate.

Examples −dof.angular.roll.rate.init deg 5

Table 8.129: UNS DOF angular rate init option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 118

DOF Velocity Init

Syntax −dof.velocity.init #u #v #w

Description Set initial velocity components.

Parameters

#u X coordinate direction velocity component.

#v Y coordinate direction velocity component.

#w Z coordinate direction velocity component.

Examples −dof.velocity.init 100 20 0

Table 8.130: UNS DOF velocity init option

DOF Acceleration Init

Syntax −dof.acceleration.init #u #v #w

Description Set initial acceleration components.

Parameters

#ax X coordinate direction acceleration component.

#ay Y coordinate direction acceleration component.

#az Z coordinate direction acceleration component.

Examples −dof.acceleration.init 100 20 0

Table 8.131: UNS DOF acceleration init option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 119

DOF Motion Origin

Syntax −dof.origin.of.motion #x #y #z

Description Set the origin of motion.

Parameters

#x X coordinate direction component.

#y Y coordinate direction component.

#z Z coordinate direction component.

Examples −dof.origin.of.motion 0 0 0

Table 8.132: UNS DOF motion origin option

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 120

DOF Log Options

Log type Description

dof.phi Phi-euler angle in body frame.

dof.theta Theta - euler angle in body frame.

dof.psi Psi - euler angle in body frame.

dof.p p - angular velocity in body frame.

dof.q q - angular velocity in body frame.

dof.r r - angular velocity in body frame.

dof.p.dot dp/dt - angular acceleration in body frame.

dof.q.dot dq/dt - angular acceleration in body frame.

dof.r.dot dr/dt - angular acceleration in body frame.

dof.all.angular All angualr information.

dof.dx x - translational offset in observer frame.

dof.dy y - translational offset in observer frame.

dof.dz z - translational offset in observer frame.

dof.u u - translational velocity in observer frame.

dof.v v - translational velocity in observer frame.

dof.w w - translational velocity in observer frame.

dof.u.dot du/dt - translational acceleration in observer frame.

dof.v.dot dv/dt - translational acceleration in observer frame.

dof.w.dot dw/dt - translational acceleration in observer frame.

dof.all.translational All translational information.

dof.origin.of.motion Origin of motion vector.

dof.origin.of.motion.x Origin of motion x - coordinate.

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 121

dof.origin.of.motion.y Origin of motion y - coordinate.

dof.origin.of.motion.z Origin of motion z - coordinate.

Table 8.133: DOF log options

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 122

8.15 Run-time Options
Arion provides the capability to control the run while the application is running
using the run-time options. This can be achieved by creating an ascii text file named
‘arion.ins’ containing one of the following run-time options:

Run-time Options

Option Action

stop Stop and save a restart.

kill Immediately stop the run (even in dual-time mode)
and save a restart.

plot Dump the FVUNS file as requested by the user at the
next available opportunity.

save Save a restart.

time.step [$system] #cfl Change to the specified constant CFL or virtual time
step of all the systems or the specified $system.

dt #dt Change to the specified physical time step (for dual
time simulations).

Table 8.134: Run-time options

8.15.1 Run-time Options Examples

The examples in Table 8.135 provide the complete Unix/Linux command to create
the ‘arion.ins’ file with the required content. Alternatively, the user may use an editor
to create the file and enter the content. Note, once Arion identifies the existence of
the file ‘arion.ins’ and reads its content, the file is erased.

Israeli Computational Fluid Dynamics Center LTD



Input File, Run Preparation, and Execution 123

Run-time Options Examples

Command Result

echo stop > arion.ins Stop and save a restart.

echo plot > arion.ins Dump the FVUNS file as requested by the user
at the next available opportunity.

echo save > arion.ins Save a restart.

echo time.step 50.0 > arion.ins Change the CFL or time step to 50.0 (all sys-
tems).

echo time.step turbulent.kw.tnt
30.0 > arion.ins

Change the CFL or virtual time step for the
k-ω-TNT turbulence model equations to 30.0.

echo dt 0.001 Change the physical time step to 0.001

Table 8.135: Run-time options examples

Israeli Computational Fluid Dynamics Center LTD



124

Bibliography

[1] F. R. Menter. Zonal two equation k−ω turbulence models for aerodynamic flows.
In 24rd AIAA Fluid Dynamics Conference, Orlando, FL, July 1993. AIAA paper
93 - 2906.

[2] Ami Harten, Peter D. Lax, and Bram Van Leer. On upstream differencing and
godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1):35–
61, 1983.

[3] E. F. Toro, M. Spruce, and W. Spears. Restoration of the contact surface in the
hll riemann solver. Shock Waves, 4(4):25–34, 1994.

[4] P. Batten, M. A. Leschziner, and U. C. Goldberg. Average-state Jacobians and
implicit methods for compressible viscous and turbulent flows. Journal of Com-
putational Physics, 137(1):38–78, 1997.

[5] B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjogreen. On Godunov-type methods
near low densities. Journal of Computational Physics, 92(2):273–295, 1991.

[6] P. L. Roe. Approximate riemann solvers, parameter vectors, and difference
schemes. Journal of Computational Physics, 43(2):357–372, 1981.

[7] SF Davis. Simplified second-order godunov-type methods. SIAM Journal on
Scientific and Statistical Computing, 9(3):445–473, 1988.

[8] Meng-Sing Liou and Christopher J. Steffen Jr. A new flux splitting scheme.
Journal of Computational Physics, 107(1):23–39, 1993.

Israeli Computational Fluid Dynamics Center LTD



Bibliography 125

[9] Meng-Sing Liou. A sequel to AUSM: AUSM+ − up. Journal of Computational
Physics, 129:364–382, 1996.

[10] Meng-Sing Liou. A sequel to AUSM, part II: AUSM+−up for all speeds. Journal
of Computational Physics, 214:137–170, 2006.

Israeli Computational Fluid Dynamics Center LTD


	Abstract
	Introduction
	Current Release
	Users's Manual Arrangement

	Physical Models
	Introduction
	Single-component Perfect Gas (SPG)
	Governing Equations
	Integral Form For Moving Grids
	Equation of State
	Transport Properties

	Gas Selection

	Turbulence Models
	RANS Turbulence Model Equations
	The k–TNT Turbulence Model
	The k–SST Model
	k–SST-2003 Model

	Boundary Conditions for the k–TNT Turbulence model
	Evaluation of the Reynolds Stress Tensor
	Turbulence-Mean-flow Coupling

	Computational Methods
	Spatial Discretization
	Flux Approximation Schemes
	HLLC
	AUSM
	AUSM+-up

	Passive Scalar Approach
	High Order Flux Approximations

	Diffusive Flux Vector Discretization
	Time Marching Schemes
	Explicit schemes
	Explicit Euler Scheme
	Runge-Kutta Schemes

	Implicit Time Marching Formulation
	Point Gauss-Seidel
	Runge-Kutta Schemes



	Boundary Conditions
	Introduction
	Wall Boundary Conditions
	Impermeable Wall Conditions
	No-Slip Condition
	Adiabatic Wall

	Far Field Conditions
	Turkel Type Conditions
	Turkel Inlet
	Turkel Outlet

	Riemann Type Conditions
	Riemann Inlet
	Riemann Outlet

	Fixed (Supersonic Inlet)
	Extrapolation (Supersonic Outlet)
	Inlet
	Outlet
	Inout

	Symmetry Boundary Conditions

	Computational Mesh
	Star-CD Export
	CGNS Export

	Parallelization
	Input File, Run Preparation, and Execution
	Preface
	Scripting Language
	Basic Input File: Example

	Grid Files
	Conversion
	Conversion Between Different Orderings

	Log Control Options
	Plot Control Options
	Table Control Options
	Parallel Options
	Equation of State Options
	Molecular
	BC Options
	Wall Distance Calculations
	Freestream Conditions Override

	System Options
	Solve Options
	PETSc Toolkit
	UNS Options
	Motion: DOF Options

	Run-time Options
	Run-time Options Examples


	Bibliography

