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Abstract

This theoretical manual describes the algorithms, methods, and input and output

files of the EZNSS code. The current revision of the code, revision 262, contains a

flow solver, a Chimera suite, an elliptic collar grid generator, a six degrees of freedom

motion simulation module, an aeroelasticity module, and a spline suite to support the

aeroelasticity module. The flow solver contains a central differencing method (Beam

and Warming), a flux vector splitting method (Steger-Warming), a partially flux

vector splitting method (F3D), and three flux difference splitting methods (HLLC,

AUSM+up, and MAPS). It has explicit and implicit time marching, with our without

dual-time-stepping, and with or without Runge-Kutta (3rd and 5th order). The flow

solver has 6 RANS turbulence models, the algebraic Baldwin-Lomax, its Degani-Schiff

variant, the Rt by Goldberg, the Spalart-Allmaras turbulence model, the k−ω-TNT,
and the k − ω-SST. The k − ω-TNT model contains flags that turns it into various

types of a hybrid model, named the XLES, the DDES, and the X−DDES models.

The solver also has three Reynolds Stress models, the JH model, the stress omega

model, and the MCL model (although included in the production version of the

code, Reynolds stress models are not fully tested yet, use with care). The Chimera

suite contains virtual body hole cutting and fail safe mechanisms for interpolations.

The aeroelasticity module is based on the Karpel-Raveh modal approach, and the

spline suite is due to Dr. Daniella Raveh. The code is fully parallel, using multi-level

parallelism for the flow solver.

Israeli Computational Fluid Dynamics Center LTD



1

Chapter 1

Introduction

The EZNSS code is a multi-zone Euler/Navier-Stokes flow solver. The EZNSS code

is capable of simulating complex, time-accurate flows about dynamically deforming

geometries. This includes relative motion between surfaces as well as deformations

caused due to aeroelastic effects. The code contains a number of implicit algorithms

and a number of turbulence models. The code handles complex geometries using

patched grids or the Chimera overset grid topology [1]. The code automatically

handles various grid topologies such as C-C, C-H, and C-O grid topologies. When the

grid topology is identified, the appropriate boundary conditions are set. To provide

higher flexibility, the user may override the boundary conditions using the input file.

The code is written using Fortran 77 and Fortran 90. The use of Fortran 90 allows

to use dynamic memory allocation. The program is parallelized using OpenMP and

multi-level parallelism and may be run on any shared memory parallel computer

with relative ease. Version 2.5.2 of the code contains the dual-time step capability,

aeroelastic capabilities, six degrees of freedom motion simulation, and real gas effects.

The report is arranged in the following manner: Chapter 2 contains a description

of the governing equations, numerical algorithms, and the turbulence models that are

used in the code. Chapter 3 describes the supported mesh topologies, with examples.

Chapter 4 contains a brief description of the boundary conditions. Chapter 5 entails

the six degrees of freedom simulation module while Chapter 6 entails the aeroelasticity

module. Parallelization is described in Chapter 7.
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The appendices provide additional information as follows: Appendices A and B

include details of the Jacobians. Appendices C and D include detailed descriptions

of the input and data files, along with some usage guidance.
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Chapter 2

Computational Methods

2.1 Introduction

Computer simulations are generally based upon the numerical solution of the model

equations in a discretized mode. The accuracy of the computations depends mainly

on the physical modeling, the numerical algorithm, and the quality of the computa-

tional mesh. This chapter contains a description of the governing equations for high

Reynolds number fluid flow, the numerical algorithms that are used in the solution

of the Euler or the Navier-Stokes equations, the boundary conditions associated with

them, and turbulence models that are used to model the Reynolds stress tensor. The

Reynolds stress tensor may be modeled by adopting the Boussinesq approximation

or by using Reynolds stress models.

2.2 Governing Equations

The equations governing fluid flow are derived from the laws of conservation of mass,

momentum, and energy. The set of five partial differential equations is known as the

Navier-Stokes equations and can be represented in a conservation-law form that is

convenient for numerical simulations, namely

∂Q

∂t
+
∂ (E − Ev)

∂x
+
∂ (F − Fv)

∂y
+
∂ (G−Gv)

∂z
= 0 (2.1)
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Computational Methods 4

where Q is the vector of conserved mass, momentum, and energy

Q =



ρ

ρu

ρv

ρw

e


(2.2)

The inviscid flux vectors, E, F , and G, are

E =



ρu

ρu2 + p

ρuv

ρuw

u (e+ p)


, F =



ρv

ρuv

ρv2 + p

ρvw

v (e+ p)


, G =



ρw

ρuw

ρvw

ρw2 + p

w (e+ p)


(2.3)

and the viscous flux vectors, Ev, Fv, and Gv, are

Ev =



0

τxx

τyx

τzx

βx


, Fv =



0

τxy

τyy

τzy

βy


, Gv =



0

τxz

τyz

τzz

βz


(2.4)
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where
τxx = λ

(
∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
+ 2µ∂u

∂x

τyy = λ
(

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
+ 2µ∂v

∂y

τzz = λ
(

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

)
+ 2µ∂w

∂z

τxy = τyx = µ
(

∂u
∂y

+ ∂v
∂x

)
τxz = τzx = µ

(
∂u
∂z

+ ∂w
∂x

)
τyz = τzy = µ

(
∂v
∂z

+ ∂w
∂y

)
βx = uτxx + vτxy + wτxz + κ∂T

∂x

βy = uτyx + vτyy + wτyz + κ∂T
∂y

βz = uτzx + vτzy + wτzz + κ∂T
∂z

(2.5)

where T is the temperature. Stokes hypothesis, λ = −2
3
µ, is typically used to further

simplify Equation (2.5).

For computational purposes these equations are made dimensionless. [2] Charac-

teristic values of all the variables can be formed from six basic reference quantities: a

reference length, L, e.g. the chord of a wing or the diameter of a body of revolution;

a reference velocity, a∞, the speed of sound of the undisturbed flow; reference density

and temperature, characteristic of the undisturbed flow, ρ∞ and T∞, respectively;

and similarly, reference values for the coefficients of viscosity and thermal conduc-

tivity, µ∞ and κ∞, characteristic of the undisturbed flow. In addition, for real gas

effects, there is a need to define a reference value for specific heat capacity in constant

pressure cp, cp∞ .

The other reference values are derived from the basic ones. Thus time t is nor-

malized by L/a∞ and the pressure p and the energy e are normalized by ρa2∞. The

temperature T is normalized by the reference value γ∞T∞. Table 2.1 contains a list

of normalization relations. These relations assist in normalizing the equations.

2.2.1 Normalizing the Continuity Equation

The continuity equation in Cartesian coordinates is given by:

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (2.6)
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Variable Relation

Length xi = xiL

Velocity ui = uia∞

Time t = t L
a∞

Density ρ = ρρ∞

Temperature T = TγT∞

Pressure p = pρ∞a
2
∞

Energy e = eρ∞a
2
∞

Viscosity coefficient µ = µµ∞

Thermal conductivity coefficient κ = κκ∞

Specific heat capacity in constant pressure cp = cpcp∞

Table 2.1: List of dimensionless variables
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Substituting the relations from Table 2.1, the continuity equation reads:

∂ρρ∞

∂t L
a∞

+
∂ρρ∞ua∞
∂xL

+
∂ρρ∞va∞
∂yL

+
∂ρρ∞wa∞

∂zL
= 0 (2.7)

or:
ρ∞a∞
L

(
∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z

)
= 0 (2.8)

Finally, the normalized continuity equation is the same as the original one where all

variables, dependent and independent, are dimensionless.

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (2.9)

2.2.2 Normalizing the Momentum Equation

As an example, the momentum equation in the x direction is considered:

∂ρu

∂t
+
∂ρu2

∂x
+
∂ρuv

∂y
+
∂ρuw

∂z
= −∂p

∂x

+
∂

∂x

[
2µ
∂u

∂x
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
+
∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+
∂

∂z

[
µ

(
∂u

∂z
+
∂w

∂x

)]
Substituting the relations from Table 2.1, the momentum equation reads:

∂ρρ∞ua∞

∂t L
a∞

+
∂ρρ∞u

2a2∞
∂xL

+
∂ρρ∞ua∞va∞

∂yL
+
∂ρρ∞ua∞wa∞

∂zL
= −∂pρ∞a

2
∞

∂xL

+
∂

∂xL

[
2µµ∞

∂ua∞
∂xL

− 2

3
µµ∞

(
∂ua∞
∂xL

+
∂va∞
∂yL

+
∂wa∞
∂zL

)]
+

∂

∂yL

[
µµ∞

(
∂ua∞
∂yL

+
∂va∞
∂xL

)]
+

∂

∂zL

[
µµ∞

(
∂ua∞
∂zL

+
∂wa∞
∂xL

)]
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Multiplying both sides of the equation with
L

ρ∞a2∞
results in:

∂ρu

∂t
+
∂ρu2

∂x
+
∂ρuv

∂y
+
∂ρuw

∂z
= −∂p

∂x
+

µ∞

ρ∞a∞L
×{

∂

∂x

[
2µ
∂u

∂x
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
+
∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+
∂

∂z

[
µ

(
∂u

∂z
+
∂w

∂x

)]}

Realizing that the term
µ∞

ρ∞a∞L
equals

M

Re
where Re =

ρ∞u∞L

µ∞
results in:

∂ρu

∂t
+
∂ρu2

∂x
+
∂ρuv

∂y
+
∂ρuw

∂z
= −∂p

∂x
+
M

Re
×{

∂

∂x

[
2µ
∂u

∂x
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
+
∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+
∂

∂z

[
µ

(
∂u

∂z
+
∂w

∂x

)]}
2.2.2.1 Turbulent Viscosity Coefficient

In turbulent flows the viscosity coefficient is composed of the molecular viscosity

coefficient, µl, and the turbulent viscosity coefficient, µt such that:

µ = µl + µt (2.10)

with the dimensionless viscosity coefficient being:

µ = µl + µt (2.11)

The molecular viscosity coefficient is evaluated using Sutherland’s Law while the

turbulent viscosity coefficient is obtained through the solution of the turbulence model
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equations.

2.2.3 Normalizing the Energy Equation

In Cartesian coordinates, the energy equation reads:

∂e

∂t
+
∂ (eu+ p)

∂x
+
∂ (ev + p)

∂y
+
∂ (ew + p)

∂z
=

∂

∂x

(
uτxx + vτxy + wτxz + κ

∂T

∂x

)
∂

∂y

(
uτyx + vτyy + wτyz + κ

∂T

∂y

)
∂

∂z

(
uτzx + vτzy + wτzz + κ

∂T

∂z

)
(2.12)

Based on the normalization conducted for the momentum equation, the shear stresses’

dimensionless form is:

τij =
µ∞a∞
L

τ ij (2.13)

Substituting the relations from Table 2.1, the energy equation reads:

∂eρ∞a
2
∞

∂t L
a∞

+
∂ (eρ∞a

2
∞ua∞ + pρ∞a

2
∞)

∂xL
+

∂ (eρ∞a
2
∞va∞ + pρ∞a

2
∞)

∂yL
+
∂ (eρ∞a

2
∞wa∞ + pρ∞a

2
∞)

∂zL
=

∂

∂xL

(
ua∞

µ∞a∞
L

τxx + va∞
µ∞a∞
L

τxy + wa∞
µ∞a∞
L

τxz + κκ∞
∂TγT∞
∂xL

)
∂

∂yL

(
ua∞

µ∞a∞
L

τ yx + va∞
µ∞a∞
L

τ yy + wa∞
µ∞a∞
L

τ yz + κκ∞
∂TγT∞
∂yL

)
∂

∂zL

(
ua∞

µ∞a∞
L

τ zx + va∞
µ∞a∞
L

τ zy + wa∞
µ∞a∞
L

τ zz + κκ∞
∂TγT∞
∂zL

)
(2.14)
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Multiplying both sides of the equation with
L

ρ∞a3∞
results in:

∂e

∂t
+
∂ (eu+ p)

∂x
+
∂ (ev + p)

∂y
+
∂ (ew + p)

∂z
=

µ∞

ρ∞a∞L
×[

∂

∂x

(
uτxx + vτxy + wτxz +

κ∞γT∞
a2∞µ∞

κ
∂T

∂x

)
∂

∂y

(
uτ yx + vτ yy + wτ yz +

κ∞γT∞
a2∞µ∞

κ
∂T

∂y

)
∂

∂z

(
uτ zx + vτ zy + wτ zz +

κ∞γT∞
a2∞µ∞

κ
∂T

∂z

)]
(2.15)

As with the momentum equation, the term
µ∞

ρ∞a∞L
=

M

Re
. Realizing that a2∞ =

γRT∞, the term
κ∞γT∞
a2∞µ∞

becomes
κ∞
Rµ∞

. The dimensionless energy equation then

becomes:

∂e

∂t
+
∂ (eu+ p)

∂x
+
∂ (ev + p)

∂y
+
∂ (ew + p)

∂z
=
M

Re
×[

∂

∂x

(
uτxx + vτxy + wτxz +

κ∞
Rµ∞

κ
∂T

∂x

)
∂

∂y

(
uτ yx + vτ yy + wτ yz +

κ∞
Rµ∞

κ
∂T

∂y

)
∂

∂z

(
uτ zx + vτ zy + wτ zz +

κ∞
Rµ∞

κ
∂T

∂z

)]
(2.16)

2.2.3.1 Turbulent Heat Conduction Coefficient

In turbulent flows the heat conduction coefficient is composed of the thermal heat

conduction coefficient, κl, and the turbulent heat conduction coefficient, κt such that:

κ = κl + κt (2.17)

with the dimensionless conductivity coefficient being:

κ = κl + κt (2.18)
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The thermal heat conduction coefficient is evaluated using a relation that is similar

to the Sutherland Law while the turbulent heat conduction coefficient is evaluated

based on the turbulent viscosity coefficient, µt and the turbulent Prandtl number:

Prt =
µtcp
κt

(2.19)

The turbulent Prandtl number itself may be assumed constant (Prt ≈ 0.9) or it can be

evaluated using empirical relations. Hence, the turbulent heat conduction coefficient

may be evaluated using:

κt =
µtcp
Prt

(2.20)

When using dimensionless form, one has to evaluate κt as follows:

Prt =
µtµ∞cpcp∞
κtκ∞

=
µ∞cp∞
κ∞

µtcp
κt

(2.21)

or:

Prt = Pr∞
µtcp
κt

(2.22)

and therefore:

κt = Pr∞
µtcp
Prt

(2.23)

2.2.4 Equation of State

To close the system of fluid dynamics equations it is necessary to establish relations

between the thermodynamics variables, p, ρ, T , and eI . For most problems in gas

dynamics, it is possible to assume a perfect gas. This assumption is also adopted in

the EZNSS code. Hence, in Equations (2.3) and (2.5), the pressure and temperature

are obtained from the equation of state for a perfect gas

p = ρRT = ρ (γ − 1) eI (2.24)

where R is the gas constant (R = 287.0 for air), eI is the internal energy of the gas,

and γ is the ratio of specific heats (cp/cv). In terms of the flow variables, the pressure
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and temperature are calculated using:

p = (γ − 1)

[
e− 1

2
ρ
(
u2 + v2 + w2

)]
T =

γ − 1

R

[
e

ρ
− 1

2

(
u2 + v2 + w2

)]
(2.25)

Following the normalization process that is described in the previous sections, the

equation of state is normalized as follows:

pρ∞a
2
∞ = ρρ∞RTγT∞ (2.26)

Once again, realizing that a2∞ = γRT∞, the normalized equation of state becomes:

p = ρT (2.27)

and the normalized pressure and temperature are evaluated using:

p = (γ − 1)

[
e− 1

2
ρ
(
u2 + v2 + w2

)]
T =

p

ρ
(2.28)

2.2.5 Constitutive Relations

In addition to the equation of state, it is also necessary to establish relations for the

coefficients of viscosity, µ, and thermal conductivity, κ. The EZNSS code utilizes the

Sutherland Formulae to evaluate the coefficients as follows:

µ = 1.458× 10−6 T
3
2

T + 110.4

κ = 2.495× 10−3 T
3
2

T + 194
(2.29)
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Using the normalization definitions from Table 2.1, the normalized Sutherland For-

mulae become:

µ =

(
1 +

110.4

T∞

) (
γT
) 3

2

γT + 110.4
T∞

κ =

(
1 +

194

T∞

) (
γT
) 3

2

γT + 194
T∞

(2.30)

2.2.6 Real Gas Effects

For high speed flows, air no longer behaves as a calorically perfect gas. The simplest

model is to account for the changes in specific heats by using polynomial relations.

The following model uses two polynomials, one for temperatures bellow T = 1000K

and one for temperatures above T = 1000K. Both polynomials take the form:

cp
R

= a0 + a1T + a2T
2 + a3T

3 + a4T
4 (2.31)

The default polynomial coefficients are given by:

a0 = 3.56839620E + 00

a1 = −6.78729429E − 04

a2 = 1.55371476E − 06

a3 = −3.29937060E − 12

a4 = −4.66395387E − 13 (2.32)

for temperatures bellow T = 1000K and

a0 = 3.08792717E + 00

a1 = 1.24597184E − 03

a2 = −4.23718945E − 07

a3 = 6.74774789E − 11

a4 = −3.97076972E − 15 (2.33)
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for temperatures above T = 1000K. Once cp is calculated, the ratio of specific heats

may be evaluated using:

γ =
cp

cp −R
(2.34)

The default polynomial coefficients may be changed using a user input file as described

in Appendix D.8.

2.2.7 Normalized Set of Equation

The normalization process results in a set of dimensionless equations that is similar

to the dimensional ones with two exceptions. The factor M/Re appears in front of

the viscous terms, where Re is the Reynolds number

Re =
ρ∞u∞L

µ∞
(2.35)

Also, the term κ in Eq. (2.5) becomes κ∞
Rµ∞

κ. The rest of the variables appear in the

same way with the addition of a bar and the set of normalized equations takes the

form
∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
=
M

Re

(
∂Ev

∂x
+
∂F v

∂y
+
∂Gv

∂z

)
(2.36)

Note: From here on the bars above all variables are omitted and a normalized physical

domain with normalized flow variables is assumed.

2.3 General Curvilinear Coordinates

The Cartesian form of the equations is not suitable for handling complex body geome-

tries. For example, application of the boundary conditions are not compatible with

the Cartesian form. To enhance compatibility the physical domain is transformed

into a computational one by introducing a coordinate transformation.[2–4] In general
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terms, this transformation takes the form

τ = t

ξ = ξ (x, y, z, t)

η = η (x, y, z, t)

ζ = ζ (x, y, z, t)

(2.37)

The transformation brings the body surface f (x, y, z) = 0 onto one computational

plane (in the current formulation ζ = 1). Therefore the coordinate ζ extends radially

from the body surface and the other two coordinates, ξ and η lie on the surface normal

to ζ. The computational domain is equi-spaced (usually chosen to be δξ = δη = δζ =

1, for convenience), so the differencing is simplified. To apply the transformation to

the model equations the chain rule is used
∂
∂t
∂
∂x
∂
∂y

∂
∂z

 =


1 ξt ηt ζt

0 ξx ηx ζx

0 ξy ηy ζy

0 ξz ηz ζz




∂
∂τ
∂
∂ξ

∂
∂η

∂
∂ζ

 (2.38)

The Jacobian of the transformation J is given by the determinant

J−1 = ∂(t,x,y,z)
∂(τ,ξ,η,ζ)

=

∣∣∣∣∣∣∣∣∣∣
1 xτ yτ zτ

0 xξ yξ zξ

0 xη yη zη

0 xζ yζ zζ

∣∣∣∣∣∣∣∣∣∣
J−1 = xξ (yηzζ − yζzη)− yξ (xηzζ − xζzη) + zξ (xηyζ − xζyη) (2.39)
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The metrics of the transformation are given by

ξt = −xτξx − yτξy − zτξz

ξx = J (yηzζ − zηyζ)

ξy = −J (xηzζ − xζzη)

ξz = J (xηyζ − xζyη)

ηt = −xτηx − yτηy − zτηz

ηx = −J (yξzζ − yζzξ)

ηy = J (xξzζ − xζzξ)

ηz = −J (xηyζ − xζyη)

ζt = −xτζx − yτζy − zτζz

ζx = J (yξzη − yηzξ)

ζy = −J (xξzη − xηzξ)

ζz = J (xξyη − xηyξ)

(2.40)

Applying the coordinate transformation results in a new set of equations that main-

tains the conservation-law form of the original equations. Equation (2.36) becomes

∂Q̂

∂τ
+
∂Ê

∂ξ
+
∂F̂

∂η
+
∂Ĝ

∂ζ
=

1

Re

(
∂Êv

∂ξ
+
∂F̂v

∂η
+
∂Ĝv

∂ζ

)
(2.41)

where
Q̂ = 1

J
Q

Ê = 1
J

(Qξt + Eξx + Fξy +Gξz)

F̂ = 1
J

(Qηt + Eηx + Fηy +Gηz)

Ĝ = 1
J

(Qζt + Eζx + Fζy +Gζz)

Êv = 1
J

(Evξx + Fvξy +Gvξz)

F̂v = 1
J

(Evηx + Fvηy +Gvηz)

Ĝv = 1
J

(Evζx + Fvζy +Gvζz)

(2.42)

Alternatively, the new dependent variables, the inviscid flux vectors, and the viscous

flux vectors can be expressed in terms of the original dependent variables and metrics
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as

Q̂ =
1

J



ρ

ρu

ρv

ρw

e


Ê =

1

J



ρU

ρuU + ξxp

ρvU + ξyp

ρwU + ξzp

(e+ p)U − ξtp



F̂ =
1

J



ρV

ρuV + ηxp

ρvV + ηyp

ρwV + ηzp

(e+ p)V − ηtp


Ĝ =

1

J



ρW

ρuW + ζxp

ρvW + ζyp

ρwW + ζzp

(e+ p)W − ζtp


(2.43)

Êv =
1

ReJ



0

ξxτxx + ξyτxy + ξzτxz

ξxτyx + ξyτyy + ξzτyz

ξxτzx + ξyτzy + ξzτzz

ξxβx + ξyβy + ξzβz



F̂v =
1

ReJ



0

ηxτxx + ηyτxy + ηzτxz

ηxτyx + ηyτyy + ηzτyz

ηxτzx + ηyτzy + ηzτzz

ηxβx + ηyβy + ηzβz



Ĝv =
1

ReJ



0

ζxτxx + ζyτxy + ζzτxz

ζxτyx + ζyτyy + ζzτyz

ζxτzx + ζyτzy + ζzτzz

ζxβx + ζyβy + ζzβz



(2.44)
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where U , V , and W are the contravariant velocities and are given by the relation
U − ξt

V − ηt

W − ζt

 =


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz



u

v

w

 (2.45)

Each element containing derivatives with respect to the original independent variables

t, x, y, z has to be expanded according to the chain rule so that the final form of

the equations includes only derivatives with respect to the transformed independent

variables τ , ξ, η, and ζ.

2.4 Implicit Numerical Methods

The fine grid spacing required to resolve the normal viscous terms close to the body

surface rules out the use of explicit methods. In explicit time-marching schemes

the maximum time step is proportional to the minimum grid spacing. As a result

the time-step limit imposed by stability is very small. In contrast, even though the

operation count per time step is high, it is more efficient to use implicit methods. The

development of a non-iterative implicit algorithm for the solution of the Navier-Stokes

equations requires a time linearization of the nonlinear vectors. The linearization

procedure is simple since the equations are written in conservation-law form. It is

done by utilizing local Taylor series expansions of the vectors Ê, F̂ , and Ĝ about

Q̂ [5, 6]

Ên+1 = Ên + Ân
(
Q̂n+1 − Q̂n

)
+O

(
∆t2
)

F̂ n+1 = F̂ n + B̂n
(
Q̂n+1 − Q̂n

)
+O

(
∆t2
)

Ĝn+1 = Ĝn + Ĉn
(
Q̂n+1 − Q̂n

)
+O

(
∆t2
) (2.46)

where Â, B̂, and Ĉ are the Jacobian matrices. The superscript n denotes evaluation

at the nth time step where t = n∆t. The elements of Â, B̂, and Ĉ, are given in

Appendix A.

A similar Taylor series expansion of the viscous flux vectors results in the viscous
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Jacobian matrices, Âv, B̂v, and Ĉv. However, the viscous Jacobians contain mixed

derivatives and therefore the block tridiagonal form of the linear systems is spoiled.

In first order, the mixed derivatives can be neglected with no loss of accuracy and

simpler matrices, that are in fact based on the thin-layer approximation [7] can be

used. The new matrices, denoted by Âξ
v, B̂

η
v , and Ĉ

ζ
v , contain derivatives only in the

direction denoted by the superscript. The elements of Âξ
v, B̂

η
v , and Ĉ

ζ
v are also given

in Appendix A.

Applying the first-order Euler implicit formula to Eq.(2.36) and incorporating the

linearizations results in a linear system with first-order time accuracy{
I + h

[
∂

∂ξ
Â+

∂

∂η
B̂ +

∂

∂ζ
Ĉ − 1

Re

(
∂

∂ξ
Âξ

v +
∂

∂η
B̂η

v +
∂

∂ζ
Ĉζ

v

)]}n

∆Q̂n =

−∆t

[
∂Ê

∂ξ
+
∂F̂

∂η
+
∂Ĝ

∂ζ
− 1

Re

(
∂Êv

∂ξ
+
∂F̂v

∂η
+
∂Ĝv

∂ζ
+

)]n
+O

(
∆t2
)

(2.47)

where I is the identity matrix, h = ∆t, ∆Q̂n = Q̂n+1 − Q̂n, and ∂/∂ξ, ∂/∂η, and

∂/∂ζ are approximated by finite differencing.

2.5 Beam and Warming Algorithm

The linear system, formed after replacing the spatial derivatives in Eq. (2.47) with

central finite difference approximations, is a block hepta-diagonal matrix with nonad-

jacent diagonals. A direct solution of this system requires inversion of a block matrix

of the size of the computational mesh. Because of the large band of the system, the

direct inversion process is a very costly one and calls for a simplification. Approxi-

mate factorization of the left-hand-side operator reduces the inversion to a sequence

of one-dimensional inversions, without altering the formal accuracy of Eq. (2.47) [5].

If central differencing is used to approximate the spatial operators, the resulting

one-dimensional operators are block tridiagonal matrices. Beam and Warming [5]

developed a factored algorithm applicable to the Euler gasdynamic equations in two

dimensions. They later included the viscous flux terms and applied the scheme to the

two-dimensional compressible Navier-Stokes equations [6]. The following form of the
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algorithm is its extension to three dimensions.(
I + hδξÂ− hRe−1δ̄ξÂ

ξ
v

)n (
I + hδηB̂ − hRe−1δ̄ηB̂

η
v

)n
(
I + hδζĈ − hRe−1δ̄ζĈ

ζ
v

)n
∆Q̂n = R̂n (2.48)

where R̂n is

R̂n = −∆t
[
δξÊ + δηF̂ + δζĜ−Re−1

(
δ̄ξÊv + δ̄ηF̂v + δ̄ζĜv

)]n
(2.49)

The above formulation applies to both Euler implicit first-order and trapezoidal

second-order time accuracy as follows: setting the quantity h equal to ∆t yields

the first-order-accurate Euler implicit form, while setting h equal to ∆t/2 yields the

second-order-accurate trapezoidal form. The δ operators denote central differencing

and the δ̄ operators denote a midpoint operator used in order to preserve the block

tridiagonal form. The numerical scheme then has second-order spatial accuracy and

either first- or second-order time accuracy.

The procedure of advancing the solution from time-step n to time-step n + 1

requires a series of three one-dimensional block-tridiagonal inversions(
I + hδξÂ− hRe−1δ̄ξÂ

ξ
v

)n
∆Q̂1 = R̂n(

I + hδηB̂ − hRe−1δ̄ηB̂
η
v

)n
∆Q̂2 = ∆Q̂1(

I + hδζĈ − hRe−1δ̄ζĈ
ζ
v

)n
∆Q̂n = ∆Q̂2

Q̂n+1 = Q̂n +∆Q̂n (2.50)

Each inversion process is set up in a way that takes advantage of the pipelining capa-

bility of supercomputers. Although the inversion is in itself recursive, the factorized

scheme can be optimized by performing concurrent multiple line inversions, further

reducing the computation time per time step.
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2.6 Flux Vector Splitting

Finite difference schemes that are based on centered spatial difference operators are

simultaneously stable for both the positive and the negative characteristic speeds as-

sociated with the convective flux vectors. The Beam andWarming algorithm is a good

example. It is constructed from Eq. (2.47) by using central differences to approximate

all of the spatial derivatives. Although the scheme is unstable in three dimensions,

the instability is a weak one and can be controlled by numerical dissipation that is

added to damp the growth of high-frequency waves and nonlinear instabilities. On

the other hand, one-sided difference operators lead to schemes that are stable only

for equations with single-signed eigenvalues. However, these schemes have better

dissipative and dispersive properties. One-sided difference operators also lead to a

lower-banded matrix than the block-tridiagonal matrix that is usually formed with

central differencing, and therefore lead to an easier inversion. The gasdynamic equa-

tions have characteristic speeds (eigenvalues) of mixed signs in subsonic flow regimes;

therefore the use of one-sided spatial-difference operators (upwind schemes) requires

splitting the flux terms.

Upwinding requires that the flux vector, (for example Ê in Eq. (2.47), and its

Jacobian matrix (in this case Â) be split into sub-vectors and sub-matrices associated

with its positive and negative eigenvalues. This can be done by realizing that the

Jacobian matrices Â, B̂, and Ĉ have a complete set of eigenvalues and eigenvectors

and therefore can be written as

Â = TξΛ̂ξT
−1
ξ , B̂ = TηΛ̂ηT

−1
η , Ĉ = TζΛ̂ζT

−1
ζ (2.51)

The eigenvalues Λ̂ξ, Λ̂η, and Λ̂ζ and the eigenvectors Tξ, Tη, and Tζ are given in

Appendix B.

Using the result of Eq. (2.51) and the fact that Ê is a homogeneous function of

degree one in Q̂, Steger and Warming [8] rewrote Ê as

Ê = TξΛ̂ξT
−1
ξ Q̂ (2.52)

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 22

where the diagonal elements of the matrix Λ̂ξ are given by Eq. (B.2). Any eigenvalue

λl, l = 1 . . . 5 can be rewritten as

λl = λ+l + λ−l (2.53)

where

λ+l =
λl + |λl|

2
, λ−l =

λl − |λl|
2

(2.54)

Using this formula one can rewrite the diagonal matrix Λ̂ξ

Λ̂ξ = Λ̂+
ξ + Λ̂−

ξ (2.55)

where Λ̂+
ξ has the diagonal elements λ+l and Λ̂−

ξ has the diagonal elements λ−l . Thus

Eq. (2.52) can be rewritten as

Ê = Tξ

(
Λ̂+

ξ + Λ̂−
ξ

)
T−1
ξ Q̂

Ê =
(
Â+ + Â−

)
Q̂

Ê =
(
Ê+ + Ê−

)
(2.56)

with

Â = Â+ + Â−, Â+ = TξΛ̂
+
ξ T

−1
ξ , Â− = TξΛ̂

−
ξ T

−1
ξ

Ê+ = Â+Q̂, Ê− = Â−Q̂
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2.6.1 Steger Warming Flux Splitting

Using the flux vector splitting as described above, the following three-factored algo-

rithm has been devised by Steger and Warming. [8](
I + hδbξÂ

+ + hδfξ Â
− − hRe−1δ̄ξÂ

ξ
v

)n
(
I + hδbηB̂

+ + hδfη B̂
− − hRe−1δ̄ηB̂

η
v

)n
(2.57)(

I + hδbζĈ
+ + hδfζ Ĉ

− − hRe−1δ̄ζĈ
ζ
v

)n
∆Q̂n = R̂n (2.58)

where

R̂n = −∆t
[
δbξÊ

+ + δfξ Ê
− + δbηF̂

+ + δfη F̂
− + δbζĜ

+ + δfζ Ĝ
− −Re−1

(
δ̄ξÊv + δ̄ηF̂v + δ̄ζĜv

)]n
(2.59)

Here h = ∆t or ∆t/2 for first- or second-order time accuracy, δb is a backward-

difference operator and δf is a forward-difference operator. This scheme is also ap-

proximately factored, based on the same principles that led to the Beam and Warming

algorithm, in order to obtain a block-tridiagonal linear system. The procedure for

advancing the solution using the Steger Warming algorithm is similar to the proce-

dure used in the Beam and Warming algorithm. Both algorithms have three factors,

one for each coordinate direction. This provides the means to devise a method that

combines the two types of differencing is different directions. The EZNSS code con-

tains the capability to choose either central or upwind differencing in each coordinate

separately.

2.6.2 F3D Algorithm

Steger et al [9] proposed another alternative to using central differencing or flux vector

splitting in all directions. By splitting and upwind-differencing the convective flux

vector in the streamwise direction, while maintaining a central difference operator for
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the crossflow fluxes, a two-factored, partially flux-split algorithm is formed[
I + hδbξÂ

+ + hδζĈ − hRe−1δ̄ζĈ
ζ
v

]n
[
I + hδfξ Â

− + hδηB̂ − hRe−1δ̄ζB̂
η
v

]n
∆Q̂n = R̂n (2.60)

where

R̂n = −∆t
[
δbξÊ

+ + δfξ Ê
− + δηF̂ + δζĜ−Re−1

(
δ̄ξÊv + δ̄ηF̂v + δ̄ζĜv

)]n
(2.61)

This scheme is also approximately factored in order to obtain a block-tridiagonal

linear system. The procedure for advancing the solution using the two-factor method

is as follows: [
I + hδbξÂ

+ + hδζĈ − hRe−1δ̄ζĈ
ζ
v

]n
∆Q̂1 = R̂n[

I + hδfξ Â
− + hδηB̂ − hRe−1δ̄ζB̂

η
v

]n
∆Q̂n = ∆Q̂1

Q̂n+1 = Q̂n +∆Q̂n (2.62)

Due to the upwinding, the first step is solved by a forward sweep, from ξ = ξmin to

ξ = ξmax, followed by a backward sweep, from ξ = ξmax to ξ = ξmin for the second

step.

The two-factored algorithm has better stability properties and was found to be

unconditionally stable when applied to a linear model wave equation [10]. It also has

better dissipative and dispersive properties due to the flux splitting in the streamwise

direction. Numerical dissipation terms are still needed in the crossflow directions,

however, since central-difference operators are used there to approximate the spatial

derivatives.

2.7 Flux Difference Splitting

An exact solution of the Riemann problem is computationally expensive and therefore

approximate Riemann solvers are commonly used. Flux difference splitting utilizes
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the solution of the approximate Riemann problem to evaluate the fluxes at cell faces.

In what follows, the three FDS methods that are used in EZNSS are described in

detail.

2.7.1 HLLC

The concept of average-state approximations was introduced by Harten, Lax and van-

Leer [11] in 1983. The Harten, Lax and van-Leer (HLL) scheme is attractive because

of its robustness, conceptual simplicity, and ease of coding, but it has the serious

flaw of a diffusive contact surface. This is mainly because the HLL solver reduces

the exact Riemann problem to two pressure waves and therefore neglects the contact

surface. Toro et al [12] discussed this limitation, and proposed a modified three wave

solver, named HLLC, where the contact is explicitly present. This HLLC schemes is

found to have the following properties: 1) exact preservation of isolated contact and

shear waves, 2) positivity preserving of scalar quantity, and 3) enforcement of the

entropy condition. The resulting scheme greatly improves contact resolution and has

been successfully used to compute compressible viscous and turbulent flows [13].

The HLLC Riemann solver as proposed by Batten et al [13] is implemented in

the EZNSS code. The HLLC scheme assumes two intermediate states, U∗
L and U∗

R

within the region bounded by the left moving wave, SL, and the right moving wave,

SR (the subscripts L and R denote the left and right states of the Riemann solver,

respectively). The states U∗
L and U∗

R are split by the contact wave, which moves with

the velocity SM (see Figure 2.1).

The wave speeds SL and SR are computed according to Einfeldt et al [14] as

follows:

SL =Min[λl, λ
Roe
l ] (2.63)

SR =Max[λm, λ
Roe
m ] (2.64)

where λl is the smallest eigenvalue and λm is the largest eigenvalue. Similarly, λRoe
l and

λRoe
m are the smallest and largest eigenvalues of the Roe matrix [15], respectively. The

normal velocity to the interface is denoted by q and is defined as q = unx+vny+wnz.
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Figure 2.1: Wave structure of the HLLC Riemann solver

The contact wave speed SM is calculated according to Batten et al [13] by

SM =
ρrqr (SR − qr)− ρlql (SL − ql) + pl − pr

ρr (SR − qr)− ρl (SL − ql)
(2.65)

This choice of SM enforces the equality of the two star pressures, i.e., p∗ = p∗L = p∗R

which is obtained from

p∗ = ρl (ql − SL) (ql − SM) + Pl = ρR (qR − SR) (qR − SM) + PR (2.66)

Introducing the intermediate left state vector

U∗
l =



ρ∗l

(ρu)∗l

(ρv)∗l

(ρw)∗l

E∗
l

(ρk)∗

(ρϕ)∗


= Ωl



ρl (SL − ql)

(SL − ql) (ρu)l + (p∗ − pl)nx

(SL − ql) (ρv)l + (p∗ − pl)ny

(SL − ql) (ρw)l + (p∗ − pl)nz

(SL − ql)El − plql + p∗SM

ρk

ρϕ


(2.67)
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where Ωl ≡ (SL − Sm)
−1. The left state flux vector becomes

F∗
l ≡ F (U∗

l ) = U∗
l SM +



0

p∗nx

p∗ny

p∗nz

p∗SM

0

0


(2.68)

and the corresponding intermediate right state vector and flux vector are obtained

from Eqs. (2.67), (2.68) by simultaneously interchanging the subscripts l → r and

L→ R. Finally, the numerical HLLC flux is defined as follow

Fc (Ul,Ur) =


Fc (Ul) if SL > 0

Fc (U
∗
l ) if SL ≤ 0 < SM

Fc (U
∗
r) if SM ≤ 0 ≤ SR

Fc (Ur) if SR < 0

 (2.69)

where Fc (Ul) (or Fc (Ur)) is the left (right) supersonic flux vector.

2.7.2 AUSM

The advection upstream splitting method (AUSM) was first introduced in the year

1993 by Liou and Steffen [16]. The development of the AUSM was motivated by

the desire to combine the efficiency of flux vector splitting methods (FVS) and the

accuracy of flux differencing splitting methods (FDS). The key idea behind AUSM

schemes is the the fact that the inviscid flux vector consists of two physically distinct

parts, namely the convective terms and the pressure terms. The convective terms can

therefore be considered as passive scalar quantities convected by a suitably defined

velocity. On the other hand, the pressure flux terms are governed by the acoustics

wave speeds.

Although AUSM schemes enjoy a demonstrated improvement in accuracy, effi-
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ciency and robustness over existing schemes, the have been found to have deficiencies

in some cases. In the year 1996, Liou improved the original AUSM, termed now

the AUSM+ [17]. Among the improvement features of the original AUSM scheme

are the following properties: (1) exact resolution of a one-dimensional contact wave

and shock discontinuities, (2) positivity preserving of scalar quantities, (3) free of

“carbuncle phenomenon”.

In the year 2006, Liou introduced a sequel scheme to the AUSM+ called the

AUSM+ − up [18] extended for all speed flows. The AUSM+ − up is implemented

in the EZNSS code and it is given as follows:

Fc (Ul,Ur) = p1/2 + ṁ1/2

{
ψl if ṁ1/2 > 0

ψr otherwise

}
(2.70)

where the mass flux, ṁ1/2 is defined as follows:

ṁ1/2 = a1/2M1/2

{
ρl if M1/2 > 0

ρr otherwise

}
(2.71)

and the pressure flux, p1/2 is given as

p1/2 = P+
(5)(Ml)pl+P−

(5)(Mr)pr−KuP+
(5)(Ml)P−

(5)(Mr)(ρl+ρr)(faa1/2)(qr− ql) (2.72)

with q as the normal velocity to the interface and Ku is a constant that equals

0.75. The remaining functions are given below. The left/right Mach number at the

interface, Ml/r, is defined as follows:

Ml/r =
ql/r
a1/2

(2.73)

where a1/2 is the speed of sound at the interface and it may be calculated by a simple

average of al and ar. Next, the Mach number at the interface, M1/2 is calculated as

follows:

M
2
=
q2l + q2r
2a1/2

(2.74)
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M2
o = min(1,max(M

2
,M2

∞) (2.75)

fa(Mo) =Mo(2−Mo) (2.76)

M1/2 = M+
(4)(Ml) +M−

(4)(Mr)−
Kp

fa
max(1− σM

2
, 0)

pr − pl
ρ1/2a

2
1/2

, ρ1/2 = (ρl + ρr)/2

(2.77)

with the constants Kp = 0.25 and σ = 1.0. The split Mach numbers M+/−
m are

polynomial functions of degree m (=1,2,4), given as follows:

M±
1 =

1

2
(M ± |M |) (2.78)

M±
2 = ±1

4
(M ± 1)2 (2.79)

M±
(4)(M) =

{
M±

(1) if |M | > 0

M±
(2)(1∓ 16βM∓

(2)) otherwise

}
(2.80)

with the constant β = 1/8. Finally the pressure polynomials are given as:

P±
(5)(M) =


1

M
M±

(1) if |M | ≥ 1

M±
(2)[(±2−M)∓ 16αMM∓

(2)) otherwise

 (2.81)

with the function α =
3

16
(−4 + 5f 2

a ).

2.7.3 MAPS

The Mach number-based advection pressure splitting scheme (MAPS) was devel-

oped by Cord-Christian Rossow [19]. The MAPS scheme employs elements of the

LDFSS [20] and of the CUSP [21] formulations and uses the left and right Mach

number at an interface to establish the flux function. Using the left and right Mach

numbers, and almost completely avoiding the need of an intermediate state, leads to

a very simple scheme, which despite its simplicity rivals the common, most advanced

high-resolution/high -accuracy schemes such as the AUSM and LDFSS schemes.
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Similar to the AUSM (and the LDFSS) scheme the MAPS scheme splits the

convective flux-density vector into and advective contribution and into a contribution

associated with the pressure. The convective flux vector then may be given as

F = Fad + Fp (2.82)

where the the advective flux, Fad, is given by

Fad =
1

4
(ql+qr)(ϕl+ϕr)−

1

4
(ϕl+ϕr)β

Mcav[Mrsign(Mr)−Mlsign(Ml)]−
1

2
cavmax(|Ml|, |Mr|)(ϕr−ϕl)

(2.83)

where ϕ is the vector of advected quantities defined as

ϕ = [ρ, ρu, ρv, ρw, ρH]T (2.84)

and ϕn is the normal ϕ at an interface. The Mach number of the interface normal

velocity, denoted by M, is evaluated as

M =
q

cav
(2.85)

and cav is the averaged speed of sound at the interface evaluated by

cav =
1

2
(cl + cr) (2.86)

The function βM is given by

βM = max(0, 2Mp − 1) (2.87)

Mp = min[max(|Ml|, |Mr|), 1] (2.88)

The contribution of the pressure at an interface is determined via

Fp =
1

2
(pl + pr)−

1

2
βp[prsign(Mr)− plsign(Ml)] (2.89)
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where

p = [0, p · nx, p · ny, p · nz, 0] (2.90)

and the blending function βp is defined as

βp = max(0, 2Mm − 1) (2.91)

Mm = min[min(|Ml|, |Mr|), 1] (2.92)

The MAPS scheme can be easily extended to all speed flows and more details can be

found in Ref [22]. The extended MAPS for all speed flow is the one that is actually

implemented in the EZNSS code.

2.8 Dual Time Step Formulation

To further increase the time accuracy and to decrease the time step, a dual-time step

procedure may be added. Following the addition of the dual time-step term and using

backward differences in time, a general second-order scheme (in time and space) takes

the following form:

Q̂k+1 − Q̂k

∆τ
+

3Q̂k+1 − 4Q̂n + Q̂n−1

2∆t
+
∂Êk+1

∂ξ
+
∂F̂ k+1

∂η
+
∂Ĝk+1

∂ζ
=

1

Re

(
∂Êk+1

v

∂ξ
+
∂F̂ k+1

v

∂η
+
∂Ĝk+1

v

∂ζ

)
(2.93)

The super-script n denotes the time step while the super-script k denotes the sub-

iteration step that arises from the dual time-step formulation. The time step is

denoted by ∆t and the sub-iteration time-step is denoted by ∆τ . The sub-iteration

time-step is set based on the CFL number and on the convergence rate of the sub-

iterations.

Following the linearization in time of the inviscid and viscous fluxes, Eq. (2.93)
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takes the form:{
I + h

[
∂

∂ξ
Â+

∂

∂η
B̂ +

∂

∂ζ
Ĉ − 1

Re

(
∂

∂ξ
Âξ

v +
∂

∂η
B̂η

v +
∂

∂ζ
Ĉζ

v

)]k}
∆Q̂k =

−h

[
3Q̂k − 4Q̂n + Q̂n−1

2∆t
+
∂Êk

∂ξ
+
∂F̂ k

∂η
+
∂Ĝk

∂ζ
− 1

Re

(
∂Êk

v

∂ξ
+
∂F̂ k

v

∂η
+
∂Ĝk

v

∂ζ
+

)]
+O

(
∆t2
)
(2.94)

where I is the identity matrix, h = 2∆τ∆t
3∆τ+2∆t

, ∆Q̂k = Q̂k+1 − Q̂k, and ∂/∂ξ, ∂/∂η,

and ∂/∂ζ are approximated by finite differencing. The matrices A, B, and C, are

the inviscid Jacobian matrices while the matrices Âξ
v, B̂

η
v , and Ĉ

ζ
v are approximated

viscous Jacobian matrices that contain derivatives only in the direction denoted by

the super-script. The approximation in evaluating the viscous Jacobian matrices is

required to guarantee the block-tridiagonal pattern of the factored schemes. Never-

theless, thanks to the dual-time formulation, the time accuracy is not hampered by

using the approximations. The specific numerical scheme is set by the fashion in which

the spatial partial derivatives are approximated. When using the Beam and Warming

scheme all derivatives are evaluated by central differences. In this cases, additional

explicit and implicit smoothing terms are added to damp high frequency oscillations.

When using the Steger-Warming flux-vector splitting, up-winding is employed for all

partial derivatives.

The sub-iteration is considered converged if the residual that is based on ∆Q̂k has

dropped three orders in magnitude. This usually happens within 6-8 sub-iterations.

At that point, ∆Q̂k → 0 and therefore Q̂k+1 → Q̂k → Q̂n+1. The right hand side of

Eq. (2.94) also approaches zero and can be rewritten as (dropping the O
(
∆t2
)
term):

3Q̂n+1 − 4Q̂n + Q̂n−1

2∆t
+
∂Ên+1

∂ξ
+
∂F̂ n+1

∂η
+
∂Ĝn+1

∂ζ
=

1

Re

(
∂Ên+1

v

∂ξ
+
∂F̂ n+1

v

∂η
+
∂Ĝn+1

v

∂ζ

)
(2.95)

Having evaluated the partial derivatives using finite differences, Eq. (2.95) is the
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second-order finite difference form of Eq. (2.41). This equation is satisfied at every

grid point for each time step.

The importance of the dual time formulation is increased when conducting store

separation simulations. Since the geometry changes require that the suite of Chimera

routines for hole cutting and interpolation point search is invoked for each time step,

using a regular time-accurate simulation, with a much smaller time step, becomes

inefficient. The dual time step formulation allows the use of much larger time steps

and therefore the overhead of the Chimera routines and other routines, such as metric

coefficients calculations, is greatly reduced. This is true, even when a rather large

number of sub-iterations is required for each time step to converge.

2.9 Turbulence Models

The unsteady Navier-Stokes equations are generally considered to govern turbulent

flows in the continuum flow regime. However, turbulent flow cannot be numerically

simulated as easy as laminar flow. To resolve a turbulent flow by direct numerical

simulation (DNS) requires that all relevant length scales be properly resolved. Such

requirements place great demands on the computer resources, a fact that renders

the possibility of conducting DNS analysis about complete aircraft configurations

infeasible.

A practical approach to simulating turbulent flow is to solve the time-averaged

Navier-Stokes equations. These equations are know as the “Reynolds averaged Navier-

Stokes” (RANS) equations. The averaging of the equations of motion gives rise to

new terms that are called the Reynolds stresses. To solve the averaged equations

the Reynolds stress tensor must be related to the flow variables through turbulence

models. The models are used to “close” the system through an additional set of as-

sumptions. The models are classified based on the number of additional partial differ-

ential equations that must be solved. The EZNSS code currently provides the choice

between zero equations, i.e. an algebraic model (two variants), two one-equation tur-

bulence models, two two-equation models, and three Reynolds stress models (RSM

are still in their beta phase). It also provide the means to conduct detached eddy
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simulations (DES) using hybrid models.

2.9.1 Baldwin-Lomax Turbulence Model

The Baldwin-Lomax algebraic turbulent model was developed originally by Baldwin

and Lomax [7] for a flat-plate boundary layer, based on the two-layer model reported

by Cebeci et al [23], and was later modified by Degani and Schiff [24] to be applicable

to flow fields containing crossflow separation. The modified model has been used

successfully to simulate subsonic as well as supersonic flows [24–26].

On the basis of the algebraic model, the coefficients of viscosity µ and thermal

conductivity κ are replaced by the relations

µ = µl + µt

κ = κl +
cpµt

Prt
(2.96)

The turbulent eddy viscosity coefficient µt is computed using the Baldwin-Lomax

algebraic eddy-viscosity model [7] as follows,

µt =

{
(µt)inner , y ≤ yc

(µt)outer , y > yc
(2.97)

where y is the normal distance from the body surface and yc is the smallest value of y

for which values from the formula for the inner region are equal to values from that for

the outer region. The formula for µt in the inner region is given by the Prandtl-Van

Driest formulation,

(µt)inner = ρl2 |ω| (2.98)

where l, the length scale, is

l = ky
[
1− e−(y

+/A+)
]

(2.99)

The quantity |ω| is the magnitude of the local vorticity vector, A+ is a constant, and
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y+ is the normal law-of-the-wall coordinate defined by

y+ =

√
ρwτw

µw

y (2.100)

where ρw is the mass density at the body surface, τw is the wall shear stress, and

µw is the viscosity coefficient at the wall. In the outer region, for attached boundary

layers the turbulent viscosity coefficient is given by

(µt)outer = KCcpρFwakeFkleb (y) (2.101)

where K (the Clauser constant) and Ccp are constants, and

Fwake = ymaxFmax (2.102)

In Eq. (2.102), Fmax is the maximum value of F (y)

F (y) = |ω| y
[
1− e−(y

+/A+)
]

(2.103)

and ymax is the value of y where Fmax is obtained. The function Fkleb (y) is the

Klebanoff intermittency factor given by

Fkleb (y) =

[
1 + 5.5

(
Ckleby

ymax

)6
]−1

(2.104)

The constants appearing in Eqs. (2.96-2.104) were determined by Baldwin and Lo-

max [7]

Prt = 0.9 k = 0.4

K = 0.0168 A+ = 26

Ccp = 1.6 Ckleb = 0.3

Israeli Computational Fluid Dynamics Center LTD



Computational Methods 36

2.9.2 Degani-Schiff Modification

The turbulence model described up to this point was developed for two-dimensional

boundary-layer flows. Degani and Schiff extended it to simulate three-dimensional

flows having crossflow separation on the basis of a similar behavior of turbulent bound-

ary layers developed near surfaces of slender bodies of revolution at high angle of

attack [24]. A close examination of a typical flow structure about an inclined body

of revolution would reveal why the extension of the model to three-dimensional flows

can be justified with the modifications proposed by Degani and Schiff.

The major difficulty that Degani and Schiff encountered in applying the Baldwin-

Lomax model to flows with crossflow separation was the evaluation of the length

scale ymax for the separated regions. The quantity ymax is found by searching for

the maximum value of the function F (y) [Eq. (2.103)] along rays perpendicular to

the body. On the windward side, where the boundary layer is still attached, the

function F (y) contains only one distinct maximum. On the leeward side of the body

the profile of the function F (y) may have more than one maximum. The attached

boundary layer creates a peak similar to the one created by the attached boundary

layer on the windward side. In addition, the vortical structure causes the function

F (y) to have more peaks due to the local maxima of |ω|. The peaks associated with

the vortical structure are greater than the one associated with the attached boundary

layer and, therefore, one of these will be picked as the reference for the evaluation of

the length scale, ymax, and, in turn, Fmax and (µt)outer.

The modifications proposed by Degani and Schiff were directed at choosing the

“right” peak of the profiles of F (y). The procedure that was adopted included a

command that if the value of F (y) dropped to 90% of the maximum value found

along a certain ray, the search would be stopped and that local maximum would be

picked for calculating the reference length and Fmax for that circumferential angle.

This procedure ensures that the first peak, the one associated with the boundary layer,

will be chosen, but does not solve the problem at all circumferential angles. At a region

of secondary separation or one close to a primary separation line, the boundary layer

does not produce a clear maximum because of a merger of the maximum associated

with the boundary layer and the maximum associated with the overlying vortex.
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So the criterion chosen to detect the maximum associated with the boundary layer

fails. In order to resolve this problem, another parameter was introduced: the cutoff

distance. With the exception of the ray on the windward plane of symmetry, where

the flow is attached and a simple search is sufficient to detect the lone maximum, the

cutoff distance was chosen to be

ycutoff = cymax (ϕ = 0) (2.105)

The search from that point on is done only up to the cutoff distance. If a maximum

is not encountered prior to reaching the cutoff distance, the search is stopped and

Fmax and ymax are taken to be those found on the previous ray. The cutoff distance

parameter, the constant c in Eq. (2.105), is chosen empirically, based on a great

number of numerical experiments.

The boundary conditions applied in the calculations are chosen to simulate vis-

cous flows. The wall boundary conditions, applied at ζ = 1, enforce zero slip and

adiabatic wall conditions. The contravariant velocities U , V , W are all set to zero,

and a zeroth-order normal pressure gradient condition is applied. The inflow bound-

ary condition, applied at ζ = ζmax, enforces free-stream conditions, while the exit

boundary condition, applied at ξ = ξmax, is a simple zeroth-order zero-axial-gradient

extrapolation condition. A periodic boundary condition is applied at η = ηmax, al-

lowing the flow to become asymmetric if warranted by the flow physics. Application

of the periodic boundary condition results in a system of periodic equations for the

circumferential factor. Computationally, the solution of the periodic set is very ex-

pensive but it is necessary in order to capture asymmetric flow solutions as well as

symmetric solutions.

2.9.3 Goldberg One-Equation Model

This one-equation turbulence model was developed by Goldberg. [27, 28] The model,

called the Rt model, consists of a transport equation for the undamped eddy viscos-

ity (denoted by R). The equation contains a convection term, a diffusion term, a
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production term, and a destruction term. The equation has the following form:

ρ
DR

Dt
=

∂

∂xi

[(
µ+

µt

σR

)
∂R

∂xj

]
+ C1ρ (RPk)

0.5 − (C3f3 − C2) ρD (2.106)

The production term, denoted by Pk, has the form

Pk = νt

[(
∂Ui

∂xj
+
∂Uj

∂xi

)
∂Ui

∂xj
− 2

3

(
∂Uk

∂xk

)2
]

(2.107)

where νt is the kinematic eddy viscosity µt

ρ
. The destruction term, denoted by D , has

the form

D =

{
∂R
∂xj

∂R
∂xj
, ∂Q

∂xj

∂R
∂xj

> 0

0, otherwise
(2.108)

where Q is the velocity magnitude, Q = (U2 + V 2 +W 2)
1
2 . The equation is subjected

to the following boundary conditions: R = 0 at solid walls and R∞ ≤ ν∞ at free

stream (and initial conditions).

The eddie viscosity field is given by:

µt = fµρR (2.109)

where

fµ =
tanh (αχ2)

tanh (βχ2)
(2.110)

and

χ =
ρR

µ
(2.111)

The model constants and damping function f3 are derived from asymptotic arguments

at walls and limit flow regions such as pipe centerline and the logarithmic overlap of

flat plate, pipe, and channel flows. The form of the closure parameters are given as
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follows:

f3 = 1 +
2α

3βC3χ

C1 = χ2

(
C3 − C2 −

1

σR

)
C2 = − 5α

3βσR

C3 = C2 +
3

2σR
(2.112)

where

σR = 0.8

α = 0.07

β = 0.2 (2.113)

Three important features characterize the Rt model. First, the model is topology

free since it does not involve wall distance and therefore, the model can be used

to calculate the eddy viscosity in boundary layers as well as in shear layers. This

allows to model the turbulent flow about an airfoil and the turbulent wake behind

it using the same model. Second, The model is capable of modeling the laminar

sub-layer as the well as the turbulent boundary layer. And third, the evolution of

the undamped eddy viscosity is such that transition from laminar to turbulent flow

occurs without any additional triggers. These three important features provide an

advantage compared to commonly used models that usually require a priori setting

of various parameters. For example, the transition point for the Spalart-Allmaras

model or the laminar sub-layer thickness for the cubic κ− ϵ model. Other models use

various methods to decide whether transition to turbulence has occurred.

The fact that the transition occurs naturally provides the means of calculating

highly complicated turbulent flows, such as flows that include transition to turbulence.

Moreover, it is possible to simulate flows that include laminar separation that is

followed by a reattachment of the flow and after a transition to turbulence, a turbulent
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separation. Such a flow is typical to the high angle of attack flow about airfoils. The

fact that the model is topology free allows to study the wake and, in turn, the effects

of the wake on the airfoil. Moreover, it provides the means for simulating the flows

about multi-element airfoils.

The model is implemented in a segregated manner, that is the flow is advanced

one time step and then the undamped eddy viscosity is advanced using an implicit

formulation of the transport equation. Great care has to be taken in generating an

appropriate mesh. Note, even with a carefully generated computational mesh, it is

extremely difficult to obtain a stable solution of the flow about airfoils at high angles

of attack. In contrast, the model has been successfully used to simulated high angle

of attack flows about slender bodies of revolution.

2.9.4 Spalart-Allmaras Turbulence Model

The curvilinear coordinate system formulation of the SA model is given as follows:

∂q̂

∂τ
+
∂f̂

∂ξ
+
∂ĝ

∂η
+
∂ĥ

∂ζ
=
∂f̂v
∂ξ

+
∂ĝv
∂η

+
∂ĥv
∂ζ

+
Sν̃

J
(2.114)

where q̂ = ρν̃/J is the solution vector. The fluid density is denoted by ρ while ν̃ is

the undamped eddy viscosity. The terms f̂ , ĝ, and ĥ represent the rotated inviscid

fluxes:

f̂ =
1

J
ρν̃U, ĝ =

1

J
ρν̃V, ĥ =

1

J
ρν̃W (2.115)

where U , V , andW are the contravariant velocities. The terms f̂v, ĝv, and ĥv represent

the rotated viscous fluxes. For the sake of convenience, the viscous fluxes are split

into diffusion (denoted by the d superscript) and anti-diffusion (denoted by the ad

superscript) and are defined as

f̂v =
(
f̂v
)d

+
(
f̂v
)ad
, ĝv =

(
ĝv
)d

+
(
f̂v
)ad
, ĥv =

(
ĥv
)d

+
(
ĥv
)ad

(2.116)
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where

(
f̂v
)d

=
1 + Cb2

σJ

∂
(
µν̃∇̃ν̃ · ∂Θ

∂x

)
∂ξ

,
(
f̂v
)ad

= −Cb2
ρν̃

σJ

∂
(
∇̃ν̃ · ∂Θ

∂x

)
∂ξ

(2.117)

(
ĝv
)d

=
1 + Cb2

σJ

∂
(
µν̃∇̃ν̃ · ∂Θ

∂y

)
∂η

,
(
ĝv
)ad

= −Cb2
ρν̃

σJ

∂
(
∇̃ν̃ · ∂Θ

∂y

)
∂η

(2.118)

(
ĥv
)d

=
1 + Cb2

σJ

∂
(
µν̃∇̃ν̃ · ∂Θ

∂z

)
∂ζ

,
(
ĥv
)ad

= −Cb2
ρν̃

σJ

∂
(
∇̃ν̃ · ∂Θ

∂z

)
∂ζ

(2.119)

and Θ = [ξ, η, ζ], ∇̃ = [ ∂
∂ξ
, ∂
∂η
, ∂
∂ζ
], µν̃ = (µ+ ρν̃). The source term is denoted as Sν̃

and is given by:

Sν̃ = Cb1S̃ρ̃ν −
1

ρ
Cω1fω

(
ρ̃ν

yn

)2

(2.120)

where yn denotes the wall distance. The remaining constants, σ, Cb1, Cω1, Cb2 and

the functions S̃, fω may be found in the original publications [29, 30]

2.9.5 Unified Hybrid RANS/LES k−ω-TNT Turbulence Model

The TNT turbulence model has two clear advantages over other two-equation tur-

bulence models: it uses a topology-free approach, and it is insensitive to the specific

turbulence dissipation rate free-stream boundary condition. Three hybrid RANS/LES

turbulence models are utilized in the current work, all of them use the TNT model

as the base model. The first hybrid model is termed the X-LES model. Developed

by Kok et al [31], it consists of a composite formulation incorporating both RANS

and LES equations; it uses a clearly defined sub grid scale (SGS) model in the LES

mode. Namely, in the LES mode, the two-equation turbulence model degenerates into

one equation of the turbulence kinetic energy of the SGS model. The second hybrid

model is the delayed DES model (DDES) originally developed by Spalart et al [32].

The DDES preserves the RANS mode in the boundary layer region, even when the

grid cell scale is lower than that of the boundary layer thickness, thus avoiding a too

early switch of the model from the RANS to the LES mode. The third model that
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is proposed in the current work is the X-DDES. This model adopted the approach

of the X-LES model, namely that the model degenerates into one equation of the

turbulence kinetic energy of the SGS model. A general, unified formulation of the

hybrid turbulence models is given by:

∂q̂

∂τ
+
∂f̂

∂ξ
+
∂ĝ

∂η
+
∂ĥ

∂ζ
=
∂f̂v
∂ξ

+
∂ĝv
∂η

+
∂ĥv
∂ζ

+
S

J
(2.121)

where q̂ = [ρk, ρω]T /J is the solution vector. The fluid density is denoted by ρ while

k is the turbulence kinetic energy and ω denotes the specific turbulence dissipation

rate. The terms f̂ , ĝ, and ĥ represent the inviscid rotated fluxes:

f̂ =
1

J
[ρkU, ρωU ]T ĝ =

1

J
[ρkV, ρωV ]T ĥ =

1

J
[ρkW, ρωW ]T (2.122)

where U , V , andW are the contravariant velocities. The terms f̂v, ĝv, and ĥv represent

the rotated viscous fluxes:

(
f̂v
)
=

1

J

∂
(
µk∇̃k · ∂Θ

∂x

)
∂ξ

,
∂
(
µω∇̃ω · ∂Θ

∂x

)
∂ξ

T

(2.123)

(
ĝv
)
=

1

J

∂
(
µk∇̃k · ∂Θ

∂y

)
∂η

,
∂
(
µω∇̃ω · ∂Θ

∂y

)
∂η

T

(2.124)

(
ĥv
)
=

1

J

∂
(
µk∇̃k · ∂Θ

∂z

)
∂ζ

,
∂
(
µω∇̃ω · ∂Θ

∂z

)
∂ζ

T

(2.125)

with Θ = [ξ, η, ζ], ∇̃ = [ ∂
∂ξ
, ∂
∂η
, ∂
∂ζ
], µk = (µ+ µt/σk), and µω = (µ+ µt/σω). The

source vector is given as:

S =

{
Pk − ρk1.5

lk

αω
ω
k
Pk − βωρω

2 +max(E , 0)

}
(2.126)
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where E is the cross diffusion term, given as:

E = σd
ρ

ω

[
∇̃k · ∂Θ

∂x
∇̃ω · ∂Θ

∂x
+ ∇̃k · ∂Θ

∂y
∇̃ω · ∂Θ

∂y
+ ∇̃k · ∂Θ

∂z
∇̃ω · ∂Θ

∂z

]
(2.127)

The production term is denoted by Pk and it is based on the Boussinesq approx-

imation. The turbulent length scale is denoted by lk, given here by the blended

RANS-LES function as follows:

lk = lRANS − fd max (lRANS − lLES, 0) (2.128)

where fd is a blending function. The background RANS model length scale, lRANS,

is given as

lRANS =
k1/2

βkω
(2.129)

and lLES is the LES length-scale defined via the sub grid length scale, ∆:

lLES = CDES∆ (2.130)

The turbulent viscosity is defined as

µt = lνρk
1/2 (2.131)

where the turbulence length scale is lν (given in Table 2.2). The remaining model

constants are σk = 1.5, σω = 2.0, σd = 0.5, βω = 0.075, βk = 0.09, αω = β
β∗ − σωκ2

√
β∗ ,

with κ = 0.41. The appropriate length scales that distinguish each model are given

in Table 2.2

It should be noted that while the common approach to estimate the grid cell scale

as the largest dimension of the grid cell edges, ∆ = max(δξ,∆η,∆ζ) for the DES

calculations, in the present work, the ∆ for the X-LES model is calculated according

to Abe [33]. Furthermore, the scale ∆ that is used for the DDES and X-DDES models

is taken from Shur et al study [34].
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Model type fd lν ∆

RANS 0 k1/2

ω
-

X-LES 1 min
(

k1/2

ω
, C1∆

) √
δξδηδζ

min(δξ,δη ,δζ)

DDES fd = 1− tanh
[
(8rd)

3] k1/2

ω
min [max (cwd, cw∆m,∆mn)∆m]

X-DDES fd = 1− tanh
[
(8rd)

3] min
(

k1/2

ω
, C1∆

)
min [max (cwd, cw∆m,∆mn)∆m]

rd =
ν+νt[

κ2d2max

(√
∂ui
∂xj

∂ui
∂xj

,10−10

)] , ∆m = max (δξ, δη, δζ), cw = 0.15, κ = 0.41,

d=wall distance, ∆mn = grid step size in the wall normal direction

Table 2.2: Turbulence length scales

2.9.6 Reynolds Stress Models

Three Reynolds stress models have been recently introduced into the code. Future

versions of the manual shall contain a detailed description of the models. Note that

the implementation is still under development. Hence, use with care.
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Chapter 3

Computational Mesh Topology

3.1 Introduction

The grid generation process in itself presents one of the main obstacles in performing

numerical simulations. Using a structured mesh, as implemented in the EZNSS code,

there are two different approaches for mesh generation. The first is the patched grid

approach and the second is the over-set grid approach, known as Chimera [1].

In the patched grid approach, the physical domain is divided into zones that touch

each other and the computational mesh is generated for each zone separately. Two

types of patched grids are supported by the code, the first, a point to point patched

grid (with no overlap, but limited flexibility); and the second, with a small over-

lap between neighboring zones to allow the smooth transfer of information between

zones. This approach allows to generate a computational mesh for complex geome-

tries. However, in a case of a geometry change, the computational mesh associated

with the component that was changed and the neighboring meshes must be adjusted

or regenerated. In the case of minor changes to the geometry, adjustments to the

original mesh provide a satisfactory solution, whereas regeneration is required for

major geometry changes.
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3.2 Chimera

In the Chimera grid approach [1, 35], a separate computational mesh is generated

for each component, such as the fuselage or the wing of an aircraft, separately. An

outer mesh is generated so that it fully includes the meshes of all the components.

The domain decomposition in this approach is simplified and the number of zones

that are required is substantially lower. However, the generation of grids surrounding

each component is performed independently, and points of a certain mesh may be

located within the solid boundaries of the aircraft. Regions located within solid

boundaries are called “holes.” This is treated by excluding points that are in the holes

from the solution process, and using interpolations to update the edges of the holes.

The calculations to determine the holes and hole boundaries require a considerable

computational effort that, in a moving body simulations, has to be added to the

overall computational cost.

3.2.1 Hole Cutting

The Chimera grid topology provides large flexibility in generating a computational

mesh about about complex geometries. However, a typical fighter aircraft geometry,

especially when it is loaded with stores presents a great challenge for grid generation.

Another challenging geometry may that of extremely small geometries where the ratio

between grid cells and geometry size is small. Therefore, the Chimera procedure,

expecially the hole cutting procedure has been extended to allow a greater flexibility

level. The Chimera procedure tolerances have been added to the input file so that

they can be appropriately set for various geometry sizes.

3.2.1.1 Multi Zone Bodies

The ability to compose a certain component from several grid zones was introduced

to construct a computational mesh for highly complex geometries. This capability

requires a different hole cutting methodology and a different scheme for handling the

related interpolation boundaries. The hole cutting method is implemented by defining

a “box” about the “body” and by examininig each grid point of all the zones that
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are not a part of the “body.” A point that is found within the “box” is considered a

hole.

3.2.1.2 Variable Thickness and Selective Hole Cutting

Two other important features that extend the Chimera scheme felxibility are the

variable thickness and selective hole cutting capabilities. These two features are

rather simple. They are both composed of a matrix where an entry corresponds to a

certain zone with respect to another zone. The entries in the matrices define whether

hole cutting is carried on in each case and the thickness matrices define the hole

sizes. In addition, the selective hole cutting feature provides the means to increase

the Chimera scheme efficiency 6 degrees of freedom motion simulations. It allows to

turn off hole cutting (there is a flag for turning off interpolation stencil calculations)

for zones where the holes do not change with the motion.

3.2.2 Virtual Body Hole Cutting

It is well known that Chimera grids need to have sufficient overlap. In addition,

Chimera grids allow better performance if the regions of data transfer between zones

exhibit low gradients. This can be controlled by setting the size of the holes that each

geometry component cuts in neighboring components (see previous section). Still,

hole edges may still reside too close to the walls of other components. Increasing the

hole sizes may result in overlapping holes or in loss of sufficient overlap. Rogers et

al [36] have proposed an automatic procedure that creates a cutting surface (termed

there a “phantom surface”) that provides sufficient overlap in cetrain regions and

large holes elsewhere. The EZNSS code has a similar feature that is called the “virtual

body,” a body that is defined for the purpose of hole cutting only. Its primary use

is for three-dimensional complex geometries, e.g., the inlet of a fighter aircraft but

it can be used for other cases as well (as can be seen from the following example).

Figure 3.1 illustrates the use of virtual bodies. The figure contains a description of

a Chimera computational mesh about a multi-element airfoil. The virtual bodies,

whose boundaries are marked by a black line, allow to generate larger holes in certain
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Figure 3.1: Chimera computational mesh (with virtual body hole cutting) about a
multi-element airfoil

regions (e.g., boundary layers) without reducing the overlap in other regions (e.g.,

the gaps).

3.2.3 Fail Safe Mechanism for Interpolations Searches

The interpolation stencil calculation algorithm is avery efficient one as it allows to

find a point in a certain grid within a number of step that does not exceed the largest

dimension of the three dimensions of the zone. However, in certain cases the search

fails. The failure is usually the results of poor grid or high body imperfections (that

in certain cases cannot be avoided). To remedy this problem, a cell by cell search is

conducted for the small number of cells for which the efficient algorithm fails.
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3.3 Patched Grids

Taking advantage of the Chimera grid topology capabilities, patched grid may be

implemented such that an arbitrary overlap may exist between neighboring meshes.

Therefore, to a certain extent, such patched grids may adequately treat sizeable

geometry changes. Further, the special implementation in the EZNSS code provides

the means to solve various complex problems is more than one way. When point to

point patched grids are used their boundaries can be mixed. That means that some

boundaries may be point to point where the other boundaries may have overlap with

Chimera grids.

3.4 Single Mesh Topology

To minimize the input parameters that a user must set before running a simulation,

the types of separate computational meshes is limited to four main types. The first

is a regular type mesh (Cartesian), that is primarily used for describing the walls of a

wind tunnel, the second is a C-H grid topology, that is used primarily for wings and

pylons, the third is a C-C grid topology that is also used for wings and pylons, and

the fourth is a C-O or an O-O grid topology for outer meshes or for slender bodies

such as a fuselage. A C-O type mesh, with certain grid connectivity, can be also used

for wings.

To further simplify the input process, the code automatically detects the grid

topology and assigns appropriate flags that are later used for boundary conditions.

These flags may be over-ridden by the user. For C-O or O-O grid topologies, the code

identifies whether the mesh is periodic and sets the parameter JPER accordingly

(JPER = 1 for a periodic element). It also identifies the existence of a singular axis

and appropriately sets the IAX parameter (IAX = 1 for a forward pointing singular

axis, IAX = 2 for a backward pointing singular axis, and IAX = 12 for two singular

axes). For C-H and C-C grid topologies the code identifies the trailing edge and

sets ISTAR for the lower and IEND for the upper and both tips (if exist) JTIPL

and JTIPR. It also sets the IWING flag based on four types. It treats each side
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separately to form a 2 digit IWING. The types are Open, which is marked by 1, H,

which is marked by 2, C, marked by 3, and a special one for hyperbolic grids that

is marked by 4. The last type is a wing mesh up to some point and a body mesh

from that point on. The C-O type mesh for wings is identified through the JPER

flag and the ICUT flag that is also identified automatically. The automatic detection

is performed for each zone separately. Another wing topology is the wing that is

composed of two zones, one for the upper surface and the other for the lower surface,

each having an H topology. This is achieved by setting the I2ZWING flag of one

zone to be the negative of the other zone number. The code verifies the connectivity

and sets the remaining boundary conditions accordingly.

3.4.1 Examples

This section contains five examples of grid topologies that are supported by the

EZNSS code. There are numerous variations of the following examples and these

are brought here to illustrate the idea of the automatic topology detection that is

supported by the EZNSS code. Note, one must follow the grid generation rules for

the automatic detection. This means that the tolerances in the grid generator should

be appropriately set. Moreover, it is recommended to verify that certain surfaces

have a zero tolerance (when using the Gridgen package, these surfaces are merged

into one). In case that the tolerances in the EZNSS code do not allow for the auto-

matic detection, the user may manually enter the appropriate parameters that define

the geometry. Care must be taken here because the detection (or lack thereof) by the

EZNSS code may point to problems in the grid.

The first example is of a C-O type topology about a slender body (see Figure 3.2).

Since the mesh is periodic in the circumferential direction, the periodicity parameter

JPER is set to JPER = 1. The body has to singular axes and therefore IAX is set

to IAX = 12. In addition, IWING is set to IWING = 0.

The second example is of a C-H topology(see Figure 3.3). The wing in this case

extends from the root to the tip (as opposed to a tip to tip wing). The mesh extends in

an H shape toward the tips. In this case the IWING parameter is set to IWING =
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Figure 3.2: C-O grid topology

Figure 3.3: C-H grid topology
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Figure 3.4: C-C grid topology

12. The IAX parameter and the JPER parameter are set to zero for this case.

The third example corresponds to a C-C type grid topology (see Figure 3.4). The

IWING parameter is set in this case to IWING = 13. In both wing cases above,

the digit “1” stand for an open tip, characteristic to wing that emanates from the

root. The digit “2” stands for the H type at the tip and the digit “3” stands for the

C type at the tip. As in the case of the C-H wing grid above, the parameters IAX

and JPER are set to zero.

The fourth and last example corresponds to the C-O type grid topology when

its used for wings (see Figure 3.5). The JPER parameter is set in this case to

JPER = 1 and the ICUT parameter is set to ICUT = 12. Depending on the

geometry, the ICUT parameter can be also set to “1” or “2.”

The fifth and last example is that of the two zone wing (see Figure 3.6). As

mentioned above it is set using the variable I2ZWING. Once verified, the program

automatically sets ISTART , IEND, JTIPL, and JTIPR.
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Figure 3.5: C-O grid topology for wings

Figure 3.6: Two zone grid topology for wings
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3.4.2 Grid Generation

Generation of the grid surrounding each component of the geometry is performed

separately. The surface grid is created based on the surface definition using various

tools. Grid points are distributed so that regions containing important flow features

are sufficiently resolved. These include regions where shocks are expected, regions

near intersections between components, and other areas where large flow gradients

are expected. Once the surface grid is defined the interior grid points are calculated

using hyperbolic or elliptic methods. In the case of a hyperbolic grid generator, the

grid is generated based on the surface grid by marching away from the surface, and

the outer boundary is formed as a part of the process. In the case of an elliptic grid

generator, the outer boundary has to be defined prior to the grid generation process.

3.5 Elliptic Collar Grids

3.5.1 Introduction

The Chimera approach provides an elegant solution to generating meshes surrounding

complex geometries. However, difficulties arise around intersecting components, e.g.,

fuselage and a wing, as they create overlapping holes. Parks et al [37] offered a solution

by creating “collar grids” to provide appropriate interpolation stencils around the

intersection region.

The collar grids are based on the C grid topology. It is a natural choice because

this type of collar grids is used to provide the link between the C grid of the wing (or

empennage component) and the fuselage grid. Consequently, two of the boundaries

of the collar grid are surfaces of the intersecting geometries, one of the fuselage and

the other of the wing. The remaining four boundaries are within the computational

domains surrounding the fuselage and the wing. In contrast to the hyperbolically

generated collar grids, one coordinate originates at the fuselage surface and runs

outward along the wing surface. A second coordinate originates at the wing surface

and runs along the fuselage surface.

The grid generation process is comprised of three steps. The first is the surfaces
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Figure 3.7: C grid topology

and boundaries generation, the second is an algebraic distribution, and the third is

smoothing using an elliptic scheme.

3.5.2 Fuselage Surface

The surface tangent to the fuselage is generated by extending the wing mesh one

grid point into the fuselage. The intersection points of the wing grid lines and the

surface of the fuselage are calculated along the wing-fuselage intersection line and

an additional line above it. These lines are defined as follows: all the lines in the

J direction (see Figure 3.7), where K = 1, and I starts before the upper trailing

edge point and ends after the lower trailing edge point. This process is repeated for

a prescribe value of K that would ensure that the collar grid completely surrounds

the holes on the surface of the fuselage. Straight lines are generated based on the

pairs of points with the same I and J values, and a prescribed number of points are

distributed along each line. At this stage, all of them are inside the fuselage. The
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points are then projected onto the surface of the fuselage. The projection process is

similar to finding the intersection between a line and a surface and is described below.

By choosing an exponential distribution function, the points on the defined surface

are clustered toward the wing-fuselage intersection.

3.5.3 Intersection Between a Line and a Discrete Surface

As was mentioned above, the fuselage surface is comprised of a series of grid points

that are the intersections between grid lines of the wing mesh and the surface of the

fuselage mesh. The intersection point can be easily found assuming both line and

surface are know analytical functions.

Let P1 = {x1, y1, z1} and P2 = {x2, y2, z2} be the points that define a line and

V⃗1 and V⃗2 be the position associated with P1 and P2 relative to zero, then the line

passing through the points is given by

V⃗l = tV⃗1 + (1− t)V⃗2 (3.1)

where −∞ < t < ∞. Let f(x, y, z) = 0 be the definition of a surface, then the

intersection between the line V⃗ and the surface f is given by f(V⃗ ) = 0. Depending

on the function f , the intersection point can be found analytically or numerically.

In our case, the fuselage is given by discrete points and therefore the intersection

point must be found numerically. An efficient method to locate the intersection point

is based on a bilinear interpolation within a cell of the fuselage mesh. Let P3, P4,

P5, and P6 be the point that define a surface cell and V3, V4, V5, and V6 be their

respective positions relative to zero, then a point in the cell is given by

V⃗c = s(rV⃗3 + (1− r)V⃗4) + (1− s)(rV⃗5 + (1− r)V⃗6) (3.2)

where 0 < r, s < 1.

If a line intersects a certain cell then Vl = Vc and 0 < r, s < 1. The parameters

r, s, and t can be found by the solution of the 3 × 3 system given by equations 3.1

and 3.2. If 0 < s < 1 the intersection point is between the points P1 and P2, and
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the intersection point is found by a linear interpolation, otherwise the point is found

through extrapolation. If r, or s are not between zero and one then the line does not

intersect the particular cell. The values of r, and s are then used to move to the next

cell and the system is solved until the intersection point is found.

3.5.4 Wing Surface

The surface tangent to the wing is generated following a similar process to that

used for generating the fuselage surface. The points that define the wing-fuselage

intersection are used together with points on the wing surface to generate the lines

that are inside or outside the wing, depending on the wing’s curvature. Points are

exponentially distributed on these lines and then projected onto the wing surface.

The surface is also extended in the ±I direction to cover the fuselage hole.

3.5.5 Volume Boundaries

The other four boundaries of the collar grid are generated based on the surface bound-

aries. The edges of two of the surfaces are normal to the fuselage and the wing surface,

respectively, and the other two are set so they smoothly close the volume covered by

the collar grid. It is achieved by using the same projection algorithms used for the

surface boundary generation.

3.5.6 Grid Generation

Once the boundaries are defined, internal points are computed through interpola-

tions based on the boundary values. The points are smoothed using an elliptic grid

generator based on the TTM algorithm [38]. The smoothing procedure is applied to

I = constant slices to ensure a smooth orthogonal mesh. Using the TTM algorithm

guarantees that in each I slice the coordinates are orthogonal and smooth. Control

functions are used to ensure a point distribution similar to that of the boundaries. The

whole process requires negligible amount of computer time since only a few iterations

are needed for convergence.
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The resulting collar grid is smooth and it maintains orthogonality everywhere it

is defined even in the region close to the intersection line. In addition, its points

are clustered toward the wing and the fuselage surfaces in a way that allows high

resolution of the intersection region.

3.5.7 Force and Moment Calculations

Collar grids maybe also used to calculate the force and moments of the surface grid

cells that are cut by the hole cutting procedure. A suite of routines allows to project

collar grid surfaces on to the appropriate body components and to set a special

hole array in the opposite manner. That way, a simple use of the force calculation

routines allow to add the contribution of the surfaces of the holes to the total forces

and moments.

3.6 Hyperbolic Collar Grids

In certain cases, it is beneficial to generate collar grids hyperbolically. In such cases,

the surface mesh is generated either by marching along the fuselage and wing surface

or, it is generated by the elliptic collar grid generator. A hyperbolic grid can have

either a C type topology or an O type topology. The latter is easy to generate and

handle but sometimes an O type mesh does not provide an adequate solution. On

the other hand, the C type topology for a hyperbolic collar grid dictates a somewhat

different grid topology at the fuselage side. This topology is marked by setting the

IWING parameter to “4” at the appropriate end of the wing. Figure 3.8 shows

a C type hyperbolic collar grid. The IWING parameter of this mesh is set to

IWING = 41.
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Figure 3.8: C type hyperbolic collar grid
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Chapter 4

Boundary Conditions

4.1 Introduction

Version 2.5 of the EZNSS code contains a wide variety of boundary conditions. The

boundary conditions are automatically set by the code, based on the identification of

the topology. The user may over-ride any of the boundary conditions using the input

file.

4.2 Wall Boundary Conditions

The boundary conditions applied in the inviscid, Euler equations simulations are set

to obtain a slip condition at all walls. All surfaces are assumed to be adiabatic and

the wall boundary conditions consist of an impermeable wall, with a zeroth-order zero

normal pressure gradient, and an adiabatic wall boundary condition (usually applied

at ζ = 1).

The boundary conditions applied in both laminar-flow and turbulent-flow calcu-

lations are identical and are chosen to simulate viscous flows. The wall boundary

conditions, applied at ζ = 1, enforce zero slip and adiabatic wall conditions. The

contravariant velocities U , V , W are all set to zero, and a zeroth-order zero normal

pressure gradient condition is applied.

The above conditions correspond to a non-accelerating geometry. When acceler-
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ation is apllied, to the whole geometry or parts of it, an additional term is added to

the pressure on the body, since the normal pressure gradient is not longer zero. In

such cases the pressure gradient is calculated as follows.

∂p

∂n
= ρa⃗ · n̂ (4.1)

where ρ is the fluid density, n̂ is the normal to the geometry, and a⃗ is the acceleration.

4.3 Inflow, Outflow, and Extrapolations

The inflow boundary condition, applied at ζ = ζmax, enforces free-stream conditions,

while exit boundary conditions utilize a simple zeroth-order zero-gradient extrapola-

tion condition. In general, for all extrapolations, a zeroth-order scheme is used. This

includes the zero normal pressure gradient condition at walls.

4.3.1 Characteristic-like Inflow Outflow

To improve the inflow or boundary conditions, the characteristic relations that are

due-to Turkel have been added. For supersonic inflow, the flow quantities at the

inflow boundary (implemented in the I direction only) are set based on the current

values of the corresponding boundary. For subsonic incoming flows, the density and

velocity components are taken as the current values and the pressure is extrapolated

from the neighboring cell (zeroth order extrapolation). For supersonic outflow, all

variables are extrapolated using a zeroth order extrapolation while for subsonic flow

the outflow pressure is prescribed by the user and the density is based on the formula:

ρ1 = ρ2 +
(
pexit − p2)/a

2
2

)
(4.2)

where the subscript 1 denotes the boundary and the subscript 2 denotes the neigh-

boring cell (a being the speed of sound).

The same scheme is also implemented for the K = Kmax. In that case the pro-

cedure is as follows. For each point, it is determined wether the flow is an inflow
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or outflow. Then it is determined whether it is supersonic or subsonic. And finally,

the appropriate boundary condition is applied (by setting the appropriate KOUT to

100).

4.4 Periodic Boundary Conditions

When a periodic boundary condition is required it is applied at η = ηmax, allowing

the flow to become asymmetric if warranted by the flow physics. Application of

the periodic boundary condition results in a system of periodic equations for the

respective factor. Computationally, the solution of the periodic set is very expensive

but it is necessary in order to capture asymmetric flow solutions as well as symmetric

solutions.

4.5 Cut Conditions in I Direction

The ICUT variable is used to set cut conditions in either Imin, Imax, or both. The

cut condition is employed using a simple interpolation between both sides of the cut

(taking the value from K = 2 for the interpolation.

4.6 Axis Conditions

Axis conditions can be employed at Imin or Imax, or at Kmin. The conditions in the

I direction are usually used for tips of slender bodies where the conditions in the K

direction are used for the center of tubes. The flow values at the axis are determined

by interpolation.

4.7 Symmetry Conditions

Symmetry conditions may be emplyoed in the I or J directions at each end or at

both ends. Symmetry is employed about the Y = 0 plane only and the grid must
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have a section on that plane to achieve the appropriate symmetry. For example, if

symmetry is employed at Jmin, the J = 2 section must be placed on the Y = 0 plane.

4.8 Free Stream Conditions

Free stream conditions may be employed on any boundary surface. In the current

version, nothing is set and therefore the free stream conditions remain the same. The

free stream flags may be used to turn off zonal boundary conditions on the appropriate

faces. Future versions may include the capability to change the free stream conditions

during restart.

4.9 Inlet Conditions

Inlet conditions are available in the I direction where the surface is primary aligned

with the X direction. The inlet conditions are implemented through charcteristic

relations.

4.10 Zonal Boundary Conditions

Zonal boundary conditions are handled in an automatic manner. The EZNSS code

includes a suite of routines to calculate inter grid communications. These routines

are invoked every time the configuration experiences a geometry change. All inner

boundaries (holes edges), and outer boundaries (usually at ζ = ζmax) are updated

using a tri-linear interpolation.
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Chapter 5

Six Degrees of Freedom Simulation

The flow equations solved by the EZNSS code are written in an inertial coordinate

system (the computational meshes may move but the observer is set). Therefore,

the forces and moments that are calculated about bodies are forces and moments in

a Cartesian coordinate system, with its origin set in a predefined static position in

space. In the beginning of the flow simulations, it is usually attached to the aircraft

tip (or, in the case of a free stream simulation about a certain store to its tip). For

further simplification of the motion calculation, the aerodynamic forces and moments

are calculated about a reference point that is the store center of gravity. Since the

aerodynamic coefficients are given in a Cartesian coordinate system, the translational

equation of motion is formulated and solved in the Cartesian coordinate system.

Solving the rotational equation of motion in such coordinates is far more compli-

cated due to the need to recalculate the moment of inertia matrix with each rotation

of the body. It is then opted to solve the rotational equation of motion in body coor-

dinates. In what follows, the numerical solution procedure of the equation of linear

motion and of the rotational equation of motion is described.

5.1 Translational Equation of Motion

The translational equation of motion is obtained by applying Newton’s law of motion.

Since it is assumed that the mass of an aircraft or its stores remain constant, the law
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takes the form:

∑
F⃗ = m

dV⃗

dt
(5.1)

where
∑
F⃗ is the sum of forces (aerodynamic and other) acting on the body, m is

the mass of the store, and V⃗ is the velocity vector. The translational velocity of a

certain store at a time step n+ 1 is calculated using forward differences arriving at:

V⃗ n+1 = V⃗ n +
∆t

m

(
3

2

∑
F⃗ n − 1

2

∑
F⃗ n−1

)
(5.2)

The motion increment is then evaluated using

∆X⃗ = ∆t

(
V⃗ n+1 + V⃗ n

)
2

(5.3)

The motion increment is applied at the center of gravity of the corresponding body.

In practice, this means that every grid point is translated by ∆X⃗.

5.2 Rotational Equation of Motion

The rotational equation of motion is obtained by applying Newton’s second law for

angular motion. Once again, it is assumed that the geometry of a parent aircraft

and any of its stores remain constant and therefore, one may assume that the iner-

tia matrix remains unchanged as well. The rotational equation of motion in body

coordinates takes the form:

∑
M⃗ = I

dΩ⃗

dt
+ Ω⃗× H⃗ (5.4)

where
∑
M⃗ is the sum of moments, I is the moment of inertia matrix, Ω⃗ is the angular

velocity vector, and H⃗ is the angular momentum vector. The aerodynamic moments,
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evaluated in Cartesian coordinates, are transformed into body coordinates using:

M1

M2

M3


=



cosψ cos θ sinψ cos θ − sin θ(
cosψ sin θ sinϕ

− sinψ cosϕ

) (
sinψ sin θ sinϕ

+cosψ cosϕ

)
cos θ sinϕ(

cosψ sin θ cosϕ

+sinψ sinϕ

) (
sinψ sin θ cosϕ

− cosψ sinϕ

)
cos θ cosϕ





Mx

My

Mz


(5.5)

In addition to the above mentioned assumptions, it is further assumed that a

typical store has at least one symmetry plane. In its local coordinates, out of the

three off-diagonal terms, Ixz is allowed to be non-zero. The other two terms Ixy and

Iyz must be zero. In light of this simplification, the angular acceleration may be

calculated by: 
ṗ

q̇

ṙ

 =


M1−(ṙ+pq)Ixz−qr(Iz−Iy)

Ix
M2−(r2−p2)Ixz−pr(Ix−Iz)

Iy
M3−(ṗ−qr)Ixz−pq(Iy−Ix)

Iz

 (5.6)

where p, q, and r are the angular velocity components in body coordinates. The

angular velocity of a certain store at a time step n+1 is also calculated using forward

differences arriving at:
pn+1

qn+1

rn+1

 =


pn

qn

rn

+∆t


3

2


ṗn

q̇n

ṙn

− 1

2


ṗn−1

q̇n−1

ṙn−1


 (5.7)

The angular velocities in Cartesian coordinates (ψ̇, θ̇, and ϕ̇) may be calculated using

the angular velocities in body coordinates (p, q, and r) by applying the following

transformation: 
ψ̇

θ̇

ϕ̇

 =


q sinϕ
cos θ

+ r cosϕ
cos θ

q cosϕ− r sin θ

p+ q sinϕ tan θ + r cosϕ tan θ

 (5.8)

Israeli Computational Fluid Dynamics Center LTD



Six Degrees of Freedom Simulation 67

5.2.1 Quaternions

Euler angles present the well-know pitch singularity. When the angle θ approaches

values of θ = ±90◦ attitude errots become noticeable. To resolve this difficulty,

quaternions have been introduced into the 6 degrees of freedom simulation. The

quaternion consists of four parameters: a scalar (q0), and a vector (q1,q2,q3). An

extra constraint is required, q20 + q21 + q22 + q23 = 1. This constraint can be easily

enforced through a normalization. Quaternion update is conducted through four first

order differential equations as follows:
q̇0

q̇1

q̇2

q̇3

 = −1

2


0 p q r

−p 0 −r q

−q r 0 −p
−r −q p 0



q0

q1

q2

q3

 (5.9)

Users may choose whether to use quaternions or Euler angles. When quaternions are

chosen the Euler angles are used just for presentation of the simulation results.

5.3 Store Location Update

Following the solution of the translational equation of motion and the rotational

equation of motion, the position and attitude of the store may be updated using the

relations:

xn+1
cg = xncg +∆x

yn+1
cg = yncg +∆y

zn+1
cg = zncg +∆z

ψn+1 = ψn +∆t ψ̇

θn+1 = θn +∆t θ̇

ϕn+1 = ϕn +∆t ϕ̇ (5.10)
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where ψ̇, θ̇, ϕ̇, are evaluated using

ψ̇ =
ψ̇n+1 + ψ̇n

2

θ̇ =
θ̇n+1 + θ̇n

2

ϕ̇ =
ϕ̇n+1 + ϕ̇n

2
(5.11)

The new grid location of a certain store is obtained by applying the above relations

to each grid point. The application of the rotation is conducted about the center of

gravity of the store.
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Chapter 6

Static and Dynamic Aeroelasticity

Solution of the discrete aeroelastic equation of motion, for a structural large model,

can be computationally burdensome. As a result, there is a motivation to reduce

the size of the problem without sacrificing significant accuracy. One approach to

reduce the computational burden of FEM-based aeroelastic analysis is to represent

the structural displacements as a linear combination of a set of its modes of vibration,

as given by:

{u} =
[
ΦR ΦE

]{ ξR

ξE

}
(6.1)

In this case,[ΦR] represents the rigid-body modes, and [ΦE] represents a subset of

the elastic modes of vibration. Both [ΦR] and [ΦE], along with their corresponding

natural frequencies, ωi, are solutions to the eigenvalue problem of the free vibration

of the structure, which is given by:

(
[K]− ω2

i [M ]
)
{Φi} = {0} (6.2)

By utilizing such a decomposition, the size of the aeroelastic problem reduces to the

number of modes picked up. Typically, a few tens of modes are sufficient to represent

displacements of a full aircraft configuration, which, in the FEM, may involve hundred

thousands degrees of freedom.

The EZNSS code utilizes a modal structural model for interfacing the flow solver
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and structural models, for calculating elastic shape deformations, and applying them

to the computational mesh. It utilizes two forms of aeroelastic displacements, a

simple rigid displacement of the whole mesh and a deformation that is based on

trans-finite interpolations. This chapter briefly describes the models for static and

dynamic aeroelasticity and the TFI approach.

6.1 Static Aeroelasticity

The modal approach to static aeroelasticity assumes that the elastic deformations of

the aircraft structure under external loads can be described as a linear combination

of a set of low-frequency elastic mode shapes [ϕE], typically 10 to 30, namely

{uE} = [ϕE]{ξE} (6.3)

where {ξE} is the generalized elastic displacement vector. The resulting static equi-

librium equation in generalized coordinates is:

[KE]{ξE} = {FE} (6.4)

where [KE] is the generalized stiffness matrix associated with [ϕE], and {FE} is the

associated generalized aerodynamic force vector. Orthogonality of the rigid-body and

elastic modes with respect to the structural mass and stiffness matrices implies that

[KE] is diagonal and that inertia relief effects in the right hand side of Eq. (6.4) are

taken care of automatically. The rigid-body counterpart of Eq. (6.4) is used below

in the maneuver trim process.

The generalized forces in Eq. (6.4) are obtained by

{FE} = [ϕA]
T ({FA} − {FC}) (6.5)

where {FA} is the aerodynamic force vector at the aerodynamic surface grid points,

{FC} is the aerodynamic force vector associated with the reference aerodynamic

shape, and [ϕA] is the elastic modes matrix, expressed at the aerodynamic inter-
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face grid points as described below. It is assumed that the reference loads vector

{FC} has been defined in a previous aerodynamic analysis. This is the case when

the reference aerodynamic shape is the “cruise shape”, namely the shape designed

for best aerodynamic performance at nominal cruise conditions. The reference aero-

dynamic shape can also be defined as the “jig shape”, namely the unstressed shape,

for which {FC} = 0.

Using the modal approach, the modal stiffness matrix and the modes matrix are

the only structural data required for the maneuver load analysis. These matrices are

calculated by the finite element code, and are read in the CFD run as it starts, and

after each structural optimization run. Since the number of structural modes used

is typically small (in this work 15 structural modes were found to be conservatively

sufficient) very little structural data is required to be transferred.

6.2 Equations of Motion for Uncoupled Aeroelas-

tic Motion

The equations of motion corresponding to an uncoupled aeroelastic motion, given in

generalized coordinates as:

[Mii]
{
ξ̈
}
+
[
2ζMii

√
Ωi

]{
ξ̇
}
+ [MiiΩi] {ξ} = {F (t)} (6.6)

where M is the diagonal, generalized-mass matrix, Ωi are the eigenvalues, ζ is the

structural damping coefficient, ξ is the vector of generalized displacements, and F are

the aerodynamic generalized forces.

6.2.1 Numerical Scheme

Since the generalized mass matrix is diagonal, the modes are uncoupled and the time

integration of the differential equation can be performed for each mode separately.

Finite differences are used to evaluate the time derivatives of ξ. In addition, the

equations are put in delta form so that only the increments are taken into account.
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This results in the following set of equations:

∆ξ̈i + 2ζ
√

Ωi∆ξ̇i + Ωi∆ξi =
∆Fi

Mii

(6.7)

one equation for each mode.

6.2.2 Solution Method

Prior to numerically solving the modal equations of motion, the system is rewritten

in a state space formulation, as follows:

∆ξ̇i = ∆ηi

∆η̇i =
∆Fi

Mii

− 2ζ
√

Ωi∆ηi − Ωi∆ξi (6.8)

The system can now be integrated using a standard Runge-Kutta method. The

EZNSS code utilizes a 4th order Runge-Kutta scheme to advance the solution in time.

This formulation has been found very robust.

6.3 Mesh Deformations using the TFI Approach

The TFI approach utilized in the EZNSS code is an arc-length TFI. In this approach,

the grid coordinates are parameterized by the length of the coordinates in three

directions. In each direction, the parameterization results in an array whose values

extend between 0.0, at the beginning of the line and 1.0 at the end of the line. The

arrays for the I direction, the J direction and the K direction are marked by P ξ, P η,

and P ζ , respectively.

A volume grid in constrained by 6 faces. Each of the faces is constrained by 4

edges and each edge is constrained by to vertices. To deform a volume grid, the edge

deformations are set, then the face deformations and finally, the face deformations

are used as the input to the three-dimensional TFI procedure.
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6.3.1 Face Deformations

The typical computational mesh that is used in the CFD computations is a body-

fitted, curvilinear mesh transformed from the physical space into a Cartesian com-

putational space. This transformation is provided as a part of the input to the CFD

program (the mesh itself is already given in the Cartesian computational space). The

transformation brings the body surface onto one computational plane, referred to

here, as the K = 1 face. The next face is found at the opposite end of the com-

putational space and is called the K = Kdim face. The other faces are the I = 1

face, the I = Idim face, the J = 1 face, and the J = Jdim face. Depending on the

mesh topology, the body surface may fill up the whole K = 1 face or just a part of it.

For example, in the case of the C-H type topology that is used for wings, the body

surface extends only between the left and right wing tips and from the leading edge

and trailing edge. Figure 6.1 shows a schematic of the computational space and the

body surface. The deformations of the body surface grid points are obtained using

the modal approach. The rest of the K = 1 face are calculated based on the surface

grid points by imposing smooth grid lines throughout the surface.

Once the K = 1 face grid points deformations are set the rest of the face are

deformed as follows. The K = Kdim face deformations are set to be equal to the

K = 1 face. Then deformations at the edges connecting between the K = 1 face and

the K = Kdim face are calculated using a one-dimensional TFI. In the K direction

the one-dimensional TFI for the ∆X deformations takes the form:

∆Xi,j,k =
(
1− P ζ

i,j,k

)
∆Xij1 + P ζ

i,j,k∆Xi,j,Kdim (6.9)

Next, the deformations of the other faces are calculated using a two-dimensional TFI.

The formula for the ∆X deformations on the I = Idim face takes the form:

∆X1,j,k = A1,j,k∆X1,j,1 +B1,j,k∆X1,j,Kdim

C1,j,k∆X1,1,k +D1,j,k∆X1,Jdim,k

−A1,j,kC1,j,k∆X1,1,1 −B1,j,kC1,j,k∆X1,1,Kdim

−A1,j,kD1,j,k∆X1,Jdim,1 −B1,j,kC1,j,k∆X1,Jdim,Kdim (6.10)
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Figure 6.1: Computational space
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The blending functions, A, B, C, and D are given by:

Ai,j,k = 1− ηi,j,k

Bi,j,k = ηi,j,k

Ci,j,k = 1− ξi,j,k

Di,j,k = ξi,j,k (6.11)

and

ξ =
P η
1,j,1 + P ζ

1,1,k

(
P η
1,j,Kdim − P η

1,j,1

)
P1,j,k

η =
P ζ
1,1,k + P η

1,j,1

(
P η
1,Jdim,k − P η

1,1,k

)
P1,j,k

P1,j,k = 1−
(
P η
1,j,Kdim − P η

1,j,1

) (
P ζ
1,Jdim,k − P ζ

1,1,k

)
(6.12)

6.3.2 Volume Deformations

The face deformations are used as the input to the three-dimensional TFI whose

formula is given by:

∆Xi,j,k = V 1 + V 2 + V 3− V 12− V 13− V 23 + V 123 (6.13)
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where

V 1 =
(
1− P ξ

i,j,k

)
∆X1,j,k + P ξ

i,j,k∆XIdim,j,k

V 2 =
(
1− P η

i,j,k

)
∆Xi,1,k + P η

i,j,k∆Xi,Jdim,k

V 3 =
(
1− P ζ

i,j,k

)
∆Xi,j,1 + P ζ

i,j,k∆Xi,j,Kdim

V 12 =
(
1− P ξ

i,j,k

) (
1− P η

i,j,k

)
∆X1,1,k +

(
1− P ξ

i,j,k

)
P η
i,j,k∆X1,Jdim,k

+ P ξ
i,j,k

(
1− P η

i,j,k

)
∆XIdim,1,k + P ξ

i,j,kP
η
i,j,k∆XIdim,Jdim,k

V 13 =
(
1− P ξ

i,j,k

)(
1− P ζ

i,j,k

)
∆X1,j,1 +

(
1− P ξ

i,j,k

)
P ζ
i,j,k∆X1,j,Kdim

+ P ξ
i,j,k

(
1− P ζ

i,j,k

)
∆XIdim,j,1 + P ξ

i,j,kP
ζ
i,j,k∆XIdim,j,Kdim

V 23 =
(
1− P η

i,j,k

) (
1− P ζ

i,j,k

)
∆Xi,1,1 +

(
1− P η

i,j,k

)
P ζ
i,j,k∆Xi,1,Kdim

+ P η
i,j,k

(
1− P ζ

i,j,k

)
∆Xi,Jdim,1 + P η

i,j,kP
ζ
i,j,k∆Xi,Jdim,Kdim

V 123 =
(
1− P ξ

i,j,k

) (
1− P η

i,j,k

) (
1− P ζ

i,j,k

)
∆X1,1,1

+
(
1− P ξ

i,j,k

) (
1− P η

i,j,k

)
P ζ
i,j,k∆X1,1,Kdim

+
(
1− P ξ

i,j,k

)
P η
i,j,k

(
1− P ζ

i,j,k

)
∆X1,Jdim,1

+ P ξ
i,j,k

(
1− P η

i,j,k

) (
1− P ζ

i,j,k

)
∆XIdim,1,1

+
(
1− P ξ

i,j,k

)
P η
i,j,kP

ζ
i,j,k∆X1,Jdim,Kdim

+ P ξ
i,j,k

(
1− P η

i,j,k

)
P ζ
i,j,k∆XIdim,1,Kdim

+ P ξ
i,j,kP

η
i,j,k

(
1− P ζ

i,j,k

)
∆XIdim,Jdim,1

+ P ξ
i,j,kP

η
i,j,kP

ζ
i,j,k∆XIdim,Jdim,Kdim (6.14)

Following the volume mesh deformations calculation, the mesh is updated using a

simple addition using:

Xi,j,k = Xi,j,k +∆Xi,j,k

Yi,j,k = Xi,j,k +∆Yi,j,k

Zi,j,k = Xi,j,k +∆Zi,j,k (6.15)
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Chapter 7

Parallelization

7.1 Introduction

Parallel computer architectures are an essential tool in simulating the flow about

complex aircraft configurations, especially when the flow is unsteady or when the

geometry changes. The ever growing computational meshes and the accompanying

vast amount of numerical operations require the use of parallel processing. Current

applications utilize shared and distributed memory architectures along with the ap-

propriate application program interface (API). The OpenMP API [39] was introduced

as an industry standard to support shared memory programs with simple directives.

Simple directives facilitate the loop level parallelism. The message passing interface

(MPI) [40] is an example of the support of distributed memory programming. An-

other example is the parallel virtual machine (PVM). [41] In contrast to the shared

memory architecture, distributed memory requires to hand-write pieces of code to

facilitate the parallel processing.

The OpenMP programming paradigm provides the means to easily introduce par-

allelism when developing new applications, or even when parallelizing an existing

code. OpenMP, however, is limited to the loop level and most compilers do not al-

low directive nesting and are thus limited to a single parallelism level. As a result,

scalability is limited and the efficiency rapidly degrades when using a large number

of processors. Moreover, even compilers that do allow the use of nested directives do
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not automatically account for all the critical issues that arise when parallelizing an

existing code.

Scalability is mostly achieve by using application specific code and the MPI li-

braries. Besides being difficult, the use of MPI is error-prone. Furthermore, using

MPI usually requires to utilize domain decomposition methods. It is quite common

that the physical space is arbitrarily split to accommodate the parallelization. Com-

putational blocks that result from the decomposition procedure communicate with

each other using MPI to transfer data to and from the boundaries of the blocks.

When using explicit algorithms, the decomposition does not hinder the convergence

nor does it affect the development of the flow. In contrast, domain decomposition

may slow down the convergence of implicit algorithms. Furthermore, when simulating

unsteady flows, the decomposition may alter the solution behavior and accuracy.

The recent emergence of shared memory parallel architectures, such as the SGI

Altix Linux based servers, provide the means for significant scalability. However,

as mentioned above, when using single-level parallelism (with OpenMP directives),

the parallelization efficiency dramatically decreases when the number of processors

increases. In recent years, the growing interest in multi-level parallelism (MLP) re-

sulted in various strategies. From using system level calls (such as “fork” and “join”),

to hybrid approaches using MPI and OpenMP, to multiple levels of parallelism using

OpenMP only. [42] Reference [42] also includes a review of previous multi-level par-

allelism efforts. The current paper describes a new multi-level parallelism approach

that allows to use the OpenMP directives and to divide the loads between groups

of processors in such a way that the parallelization efficiency drop may be greatly

reduced. Moreover, the current approach provides the means to convert a single level

parallelism code to a multi-level parallelism code with minor changes to the original

code.

7.2 Single-Level Parallelism

Using single level OpenMP parallelism, one could either parallelize the code in the

zonal level or the loop level. Zonal level parallelism is limited since the largest number
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of processors that may be used is the number of zones, namely one processor handles

one zone. Such a parallelization scheme is efficient only when the sizes of the zones

are similar. This rarely occurs. Moreover, quite often, the number of zones may be

small, especially when simulating simple geometries. For example, the simulation of

the flow about a wing or a simple slender body may require only one zone. And even

when the number of zones is large, a balanced load may be achieved only after several

zones are grouped together. Each group of zones is then handled by a certain single

processor.

Consequently, a scalable parallelization may be achieved only on the loop level.

Of course, one would like to parallelize the outer most loop or loops of the program,

loops that contain the bulk load of the solver. Each section of the right hand side,

namely, the inviscid section, the smoothing section (if applicable), the viscous sec-

tion, and the turbulence modeling section may be separately parallelized quite easily.

Parallelization of the left hand side, namely the inversion of the left hand side matrix,

is facilitated by the alternate direction nature of the approximate factorization (it is

in fact an ADI scheme). Following the factorization, the inversion of the matrix is re-

placed by a series of line inversions that are independent from each other. Therefore,

the parallelization of the left hand side is also easily carried out. All of the above is

conducted by a relatively small number of OpenMP directives.

The following example, taken directly from the EZNSS code, illustrates the ease

of parallelization using OpenMP directives. As explained above, the outer most loop

is parallelized to reduce the overhead and to avoid was is term as “granularity.” The

variables that are defined by the “PRIVATE” clause are multiplied during run time,

based on the number of processors that available for the specific task. The efficiency

of such parallelization depend on two factors. The first is the length of the outer

most loop with respect to the number of available processors. If the loop is short and

the number of processors does not evenly divide into the loop length, the efficiency

is expected to be low. The second factor is the amount of work that is conducted

in the inner most loop. A small amount of work, compared to the whole program,

would result in low efficiency. High efficiency may be achieved only when both factors

favorably affect the parallelization.
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C$OMP PARALLEL DO PRIVATE(I,J,K,WA,A,B,C,WA0,WA1,WA2,WA3,WA4)

C$OMP& SHARED(MDIM,IDIM,JDIM,KDIM,IB,IE,IVIS)

DO K=KB,KE

DO J=JB,JE

DO I=IB,IE

....

Some work

....

END DO

END DO

END DO

C$OMP END PARALLEL DO

Consequently, as mentioned above, the efficiency of the loop level parallelism drops

when using a large number of processors. The reason is two-fold: first, certain proces-

sors have to access the memory that resides in another node that may be physically

further away; and second, the remainder of a loop may become significant. For ex-

ample, when a loop of the size of 50 is parallelized and 16 processors are used, 14 of

the processors may wait for the completion of the last 2.

7.3 Multi-Level Parallelism

The ideal solution would be to use zonal parallelization along with loop level par-

allelization. Such an ideal solution would utilize OpenMP directives. The choice of

OpenMP is due to its aforementioned simplicity. However, not all compilers support

the nesting of parallel constructs in OpenMP. Moreover, even the compilers that do

allow to have nested directives, do not always account for the appropriate duplication

of works arrays (through the “PRIVATE” directive). The recent version of the Intel

Fortran compiler allows the nesting of OpenMP directives and it is the one that is

used in the current work. [43]

The first part of the multi-level parallelization entails the grouping of the zones

into groups as prescribed by the user. This is the outer parallelization level. Splitting
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into groups that would have an approximately balanced computational load may be

achieved by using a rather simple algorithm. The second part has already existed in

the code, namely the loop level parallelism. All that is left to do is to add a few more

directives to set the nested parallelism, to prescribe the number of groups, and to

prescribe the number of threads for each group (the total number of processors being

the number of groups times the number of threads).

As mentioned above, not all compilers fully account for the need to duplicate work

arrays and temporary variables. Since the number of total processors and the amount

of required memory space are known, one could allocated the appropriate amount of

memory and to set the memory for each group or thread as needed.

The following example illustrates the introduction of multi level parallelism into

the EZNSS code. The original single level code had a simple loop for solving the flow

in all the zones as follows:

! Zonal loop

DO N = 1, NZ

....

SOLVER

....

END DO

! End zonal loop

The flow solver part was parallelized exactly as described in the previous section.

As mentioned above, to achieve a balanced multi level parallelism, the zones have

to be grouped where each of the groups has a comparable computational load. In

the development process, it was found that the computational time per grid point

grows as the zone becomes larger. Therefore a weighing strategy was adopted as a

part of the grouping algorithm. The number of zones per each group is stored in an

appropriate array and another array stores the list of zones that belong to each groups.

The following code shows how the arrays are utilized to determine the appropriate

zone for each outer level. The SOLVER part remains parallelized as described above

as it comprises the inner parallelization level. The rest of the changes are OpenMP
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calls and directives that are used to enable nested parallelism, to set the number of

threads for each level, and to actually parallelize the outer loop. The number of total

threads is of course MLPOUTER * MLPINNER.

! Start of multi level parallelism section

CALL OMP_SET_NESTED(.TRUE.)

! Outer parallelization level

CALL OMP_SET_NUM_THREADS(MLPOUTER)

!$OMP PARALLEL DO PRIVATE(NMLP,IMEM,N)

DO NMLP = 1, MLPOUTER

CALL OMP_SET_NUM_THREADS(MLPINNER)

DO IMEM = 1, IGRPSIZE(NMLP)

N = IGRPMEMS(NMLP,IMEM)

....

SOLVER

....

END DO

! End zonal loop

END DO

C$OMP END PARALLEL DO

!End group

Ideally, the above code should have been sufficient to accommodate the MLP scheme.

However, the Intel compiler, does not multiply work arrays twice. Fortunately, this

deficiency does not present a major obstacle. Since the user has to prescribe the

number of inner and outer threads, the total number of processors is known and

therefore the exact size of the work arrays is also known. These are allocated and

appropriately transferred to each of the groups. They are later multiplied by the

OpenMP directives of the inner parallelization level. Thus the SOLVER part remains

unchanged.
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Chapter 8

Summary

This version of the manual is the first one that contains a user manual and a partial

test case description. This version of the code contains many of the long waited fea-

tures such as store separation from a pivot release point, a line Gauss-Seidel marching

scheme, Spalart-Allmaras and k− ω-SST turbulence model, and an embedded spline

capability. As the code is still being developed, with a long list of feature requests,

new versions with new features shall be available in the near future.
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Appendix A

Jacobian Matrices

A.1 Inviscid Flux Vectors Jacobian Matrices

Â, B̂, Ĉ =

kt kx ky kz 0

kxϕ
2 − uθ kt + θ − kxγ2u kyu− γ1kxv kzu− γ1kxw kxγ1

kyϕ
2 − vθ kxv − kyγ1u kt + θ − kyγ2v kzv − γ1kyw kyγ1

kzϕ
2 − wθ kxw − kzγ1u kyw − kzγ1v kt + θ − kzγ2w kzγ1

θ(2ϕ2 − γe
ρ
) kxβ − γ1uθ kyβ − γ1vθ kzβ − γ1wθ kt + γθ


(A.1)

where

ϕ2 = 0.5(γ − 1)(u2 + v2 + w2)

θ = kxu+ kyv + kzw

γ1 = γ − 1

γ2 = γ − 2

β =
γe

ρ
− ϕ2

with k = ξ to obtain Â, k = η to obtain B̂, and k = ζ to obtain Ĉ.
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A.2 Jacobian Matrix of the Viscous Flux Vector

Âξ
v, B̂

η
v , Ĉ

ζ
v =

1

J



0 0 0 0 0

m21 α1δk (ρ
−1) α2δk (ρ

−1) α3δk (ρ
−1) 0

m31 α2δk (ρ
−1) α4δk (ρ

−1) α5δk (ρ
−1) 0

m41 α3δk (ρ
−1) α5δk (ρ

−1) α6δk (ρ
−1) 0

m51 m52 m53 m54 α0δk (ρ
−1)


J (A.2)

where
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m21 = α1δk (−u/ρ) + α2δk (−v/ρ) + α3δk (−w/ρ)

m31 = α2δk (−u/ρ) + α4δk (−v/ρ) + α5δk (−w/ρ)

m41 = α3δk (−u/ρ) + α5δk (−v/ρ) + α6δk (−w/ρ)

m51 = α1δk
(
−u2/ρ

)
+ α2δk (−2uv/ρ) + α3δk (−2uw/ρ)

+ α4δk
(
−v2/ρ

)
+ α6δk

(
−w2/ρ

)
+ α3δk (−2vw/ρ)

+ α0δk
(
−e/ρ2

)
+ α0δk

[(
u2 + v2 + w2

)
/ρ
]

m52 = −m21 − α0δk (u/ρ)

m53 = −m31 − α0δk (v/ρ)

m54 = −m41 − α0δk (w/ρ)

α0 =
γκ

cp

(
k2x + k2y + k2z

)
α1 = µ

(
4k2x
3

+ k2y + k2z

)
α2 =

(
µkxky
3

)
α3 =

(
µkxkz
3

)
α4 = µ

(
k2x +

4k2y
3

+ k2z

)
α5 =

(
µkykz
3

)
α6 = µ

(
k2x + k2y +

4k2z
3

)

with k = ξ to obtain Âξ
v, k = η to obtain B̂η

v , and k = ζ to obtain Ĉζ
v .

Note that for the dimensionless form, the term α0 becomes:

α0 =
γκ

cpPr∞

(
k2x + k2y + k2z

)
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Appendix B

Jacobian Matrices Eigensystems

B.1 Eigenvectors

Tk =



k̃x k̃y k̃z α α

k̃xu k̃yu− k̃zρ k̃zu+ k̃yρ α(u+ k̃xc) α(u− k̃xc)

k̃xv + k̃zρ k̃yv k̃zv − k̃xρ α(v + k̃yc) α(v − k̃yc)

k̃xw − k̃yρ k̃yw + k̃xρ k̃zw α(w + k̃zc) α(w − k̃zc)

k̃xϕ1 + β1 k̃yϕ1 + β2 k̃zϕ1 + β3 α(ϕ2 + cθ̃) α(ϕ2 − cθ̃)


(B.1)

where
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k̃x =
kx

(k2x + k2y + k2z)
1/2

k̃y =
ky

(k2x + k2y + k2z)
1/2

k̃z =
kz

(k2x + k2y + k2z)
1/2

θ̃ = k̃xu+ k̃yv + k̃zw

α =
ρ√
2c

ϕ1 =
ϕ2

γ − 1

ϕ2 =
ϕ2 + c2

γ − 1

ϕ2 = 0.5(γ − 1)(u2 + v2 + w2)

β1 = ρ(k̃zv − k̃yw)

β2 = ρ(k̃xw − k̃zu)

β3 = ρ(k̃yu− k̃xv)

and k = ξ to obtain Tξ, k = η to obtain Tη, and k = ζ to obtain Tζ .

B.2 Eigenvalues

Λ̂ξ = D
[
U,U, U, U + c(ξ2x + ξ2y + ξ2z )

1/2, U − c(ξ2x + ξ2y + ξ2z )
1/2
]

Λ̂η = D
[
V, V, V, V + c(η2x + η2y + η2z)

1/2, V − c(η2x + η2y + η2z)
1/2
]

Λ̂ζ = D
[
W,W,W,W + c(ζ2x + ζ2y + ζ2z )

1/2,W − c(ζ2x + ζ2y + ζ2z )
1/2
]

(B.2)
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Appendix C

Input Files

C.1 Input File Names and Types

The main input file name can named arbitrarily (eznss.i.defaults in the distribution).

The rest of the input files are set inside the main input file. All have example templates

as a part of the distribution. They are: eznssa.i, the array input file name, cgg.i, the

collar grid generation input file, 6dof.i, the 6DOF input file, eznssvb.i, the virtual

body iput file, ecgu.i, the elliptic collar grid update input file, spline.i, the spline

input file, and flap.i, the flap input file.

C.2 Main Input File eznss.i.defaults

The main input file is a classical Fortran NAMELIST file. It contains all global input

for the code. Is is composed of groups based on subject. In what follows, all the

groups and the input parameters are described.

VERINP - Versioning Input

Variable Name Type Def. Description
IVFLAG Int 0 IVFLAG=0 - Normal run.

IVFLAG=1 - Write version information and
stop.
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FLOINP - Flow Conditions

Variable Name Type Def. Description
ALT Real 0.0 Altitude [meters].
ALP Real 0.0 Angle of attack [degrees].
BET Real 0.0 Side slip angle [degrees].
FSMACH Real 0.84 Free stream Mach number.
REY Real 106 Reynolds number; The Reynolds number en-

tered here should be evaluated based on the real
reference length that was used for normaliza-
tion of the computational mesh, the free stream
density, the free stream velocity, and the free
stream viscosity.
REY =1.0 - Dimensional simulation is invoked
and the Reynolds number per meter is calcu-
lated and printed in the eznss.out file.

PR Real 0.7 Prandtl number (not used by version 2.6.0 and
up).

GAMMA Real 1.4 Initial specific heats ratio (γ).
IGAMMAF Int 0 Variable γ flag.

IGAMMAF = 0 - Constant γ.
IGAMMAF = 1 - Variable γ.

IPERFLOW Int 0 Periodic boundary conditions.
IPERFLOW =1 - Periodic boundary condition
in the I coordinate direction is enforced.
IPERFLOW =2 - Periodic boundary condition
in the J coordinate direction is enforced.
IPERFLOW =12 - Periodic boundary condi-
tions in both the I and J coordinate directions
are enforced.

ILOWMACH Int 0 Low Mach number preconditioning flag;
ILOWMACH =0 - No preconditioning.
ILOWMACH =1 - Low Mach preconditioning
(works properly with AUSM fluxes and MAPS
Jacobians).
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SMOINP - Smoothing Input

Variable Name Type Def. Description
EPSE Real 0.03 Explicit smoothing coefficient; Used only for the

Beam and Warming and F3D schemes; The de-
fault value is good for subsonic flows. For tran-
sonic and supersonic flows EPSE should be set
to 0.06 to 0.1.

EPSI Real 0.03 Implicit smoothing coefficient; EPSI is set as
equal to EPSE inside the program so there is
no need to set it anymore.

SMOOL Real 1.0 Smoothing coefficient reduction factor; If every-
thing works SMOOL should be kept as 1.0 but
it can be set to any value between 0.0 and 1.0.

FNSINP - File Names Input

Variable Name Type Def. Description
AFNAME String ” Array input file name.
CGFNAME String ” Collar grid generation file name.
SDFNAME String ” 6 DOF file name.
VBFNAME String ” Virtual body file name.
ECGUFNAME String ” Elliptic collar grid update file name.
SPLFNAME String ” Spline input file name.
FLPFNAME String ” Flap deflection input file name.
RTRFNAME String ” Rotor input file name.
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TIMINP - Temporal and Spatial Accuracy

Variable Name Type Def. Description
GDTI Real -1.0 Initial time step.

GDTI < 0 - Initial CFL number.
GDTI > 0 - Initial time step for first order time
accurate simulation (no dual time stepping).

GDTF Real -1.0 Final time step.
GDTF < 0 - Final CFL number; The CFL num-
ber grows from GDTI to GDTF within ISLOWS
steps (see below how and where ISLOWS is de-
fined)
GDTF > 0 - Final time step for first order time
accurate simulation (no dual time stepping).

FSA Real 0.5 Flux split spatial accuracy.
FSA < 0.0 - Beam and Warming algorithm is
utilized (in this case the magnitude of FSA is
immaterial).
FSA ≥ 0.0 - (preferably at or around 0.5) and
all IFSF? (see below) input arguments are zero,
the F3D algorithm is utilized.
FSA ≥ 0.0 and any of the IFSF? input argu-
ments is greater than 0, flux splitting is utilized
in that specific direction based on the values of
IFSF? (see below).
FSA = 0.0 - first order spatial accuracy.
FSA = 0.5 - second order spatial accuracy (Ste-
ger Warming splitting allows blending).

DDT Real 0.0 Time step for dual-time step time marching.
H Real 1.0 Implicit temporal accuracy (do not change!).
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METINP - Methods Input

Variable Name Type Def. Description
IB2 Int 1 IB2 = 1 - Regular time marching.

IB2 = 2 - B2 type time marching (available only
for single time stepping and for NRK = 1).

IMET Int 1 IMET = 0 - Explicit time marching.
IMET = 1 - Implicit ADI time marching.
IMET = 2 - Implicit LGS time marching.

IFSFX Int 3 Flux splitting flag; ξ coordinate direction.
IFSFX = 1 - Steger Warming FVS.
IFSFX = 2 - HLLC FDS.
IFSFX = 3 - AUSM+-up.
IFSFX = 4 - MAPS.

IFSFY Int 3 Flux splitting flag; η coordinate direction.
IFSFY = 1 - Steger Warming FVS.
IFSFY = 2 - HLLC FDS.
IFSFY = 3 - AUSM+-up.
IFSFY = 4 - MAPS.

IFSFZ Int 3 Flux splitting flag; ζ coordinate direction.
IFSFZ = 1 - Steger Warming FVS.
IFSFZ = 2 - HLLC FDS.
IFSFZ = 3 - AUSM+-up.
IFSFZ = 4 - MAPS.

ILHS Int 1 LHS Jacobians.
ILHS = 1 - Steger Warming.
ILHS = 4 - MAPS.

ILIMITER Int 1 ILIMITER = 0 - Limiter is disabled.
ILIMITER = 1 - Limiter is enabled.
ILIMITER = 3 - Limiter is enabled with addi-
tional pressure based limiting.

NRK Int 1 Number of Runge-Kutta (RK) steps (implicit).
NRK = 1 - No RK steps.
NRK = 3 - 3rd order RK.
NRK = 5 - 5th order RK.

IDODDADI Int 0 Diagonal dominance ADI flag.
IDODDADI = 0 - ADI.
IDODDADI ≥ 1 - Number of DDADI sub-
iterations.

NSUBITER Int 1 Number of sub-iterations in dual time stepping
(should be set to 1 except for dual time).
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RESINP - Restart Input

Variable Name Type Def. Description
ISTART Int 0 ISTART = 0 - Starting a new solution from

scratch.
ISTART = 1 - Restarting a solution (reading
all fort.5?? solution files, except for Chimera
[fort.59?] files).
ISTART = 100 - Restarting a solution while
reading also Chimera files (reading all fort.5??
restart files, including fort.59? files).
ISTART = 200 - Starting a new solution
from scratch but reading Chimera files (fort.59?
files).

NSTEPS Int 1 Number of steps.
ISLOWS Int 100 If GDTI = GDTF then ISLOWS signifies

the number of slow start steps where the
wall boundary conditions are gradually intro-
duced into the solution. If ABS(GDTI) <
ABS(GDTF) then the CFL number is increased
from ABS(GDTI) to ABS(GDTF) within IS-
LOWS steps.

IRUN Int 1 IRUN = 1 - Normal run.
IRUN = 0 - Conduct hole cutting, interpolation
stencil search, and exit; write fort.79? with hole
interpolation information, fort.69? (hole files
that can be used for restart) and fort.699 for
interpolations (also can be used for restart).
IRUN = -1 - Conduct hole cutting and exit;
write fort.79? with hole information only.
IRUN = -2 - Conduct hole cutting and exit;
write fort.99? with hole information including
hole origin.
IRUN = 3 - Dry 6 DOF run; no hole cutting
and no flow solution.
IRUN = 5 - BC detection run.
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OUTINP - Output Frequency Input

Variable Name Type Def. Description
ISTEPL2N Int 20 L2NORM printout frequency; set to one in de-

bug mode.
ISTEPOUT Int 20 Output restart files frequency.
ISTEPSUR Int -1 Surface output frequency.

ISTEPSUR = -1 - No surface files are printed
out.
ISTEPSUR > 0 - Surface files are printed out
every ISTEPSUR steps; the files are named
gsurf{step number}.udp and qsurf{step num-
ber}.udp for the grid and q files, respectively.

ISTEPSOL Int -1 Saved solution output frequency.
ISTEPSOL = -1 - No solution files are printed
out.
ISTEPSOL > 0 - Solution files are printed
out every ISTEPSOL steps; the files are
named gsol{step number}.udp and qsol{step -
number}.udp for the grid and q files, respec-
tively.
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FMRINP - Forces and Moments Input

Variable Name Type Def. Description
REFLEN Real 1.0 Real reference length [meters] (used only to cal-

culate the real time in a normalized 6 DOF run
or a normalized elastic run).

GSREF Real 1.0 Global reference area [meters2] or [dimension-
less].

GCREF Real 1.0 Global reference length [meters] or [dimension-
less].

GBREF Real 1.0 Global reference span [meters] or [dimension-
less].

X0 Real 0.0 Global moment reference point [meters] or [di-
mensionless].

Y0 Real 0.0 Global moment reference point [meters] or [di-
mensionless].

Z0 Real 0.0 Global moment reference point [meters] or [di-
mensionless].

BPFAC Real 0.0 The back pressure of a cylindrical body is eval-
uated as BPFAC × AREA × PINF [back pres-
sure factor × area (calculated automatically) ×
free stream pressure] and is subtracted from the
axial force.
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VISINP - Viscosity and Turbulence Input

Variable Name Type Def. Description
IVISG Int 0 Global viscosity flag.

IVISG = 0 - Inviscid flow assumption.
IVISG = 1 - Viscous flow.
IVISG = 2 - Thin layer approximation.

ITURG Int 0 Global turbulence flag.
ITURG = 0 - Laminar flow assumption.
ITURG = 1 - Modified Baldwin-Lomax model.
ITURG = 2 - Degani-Schiff model.
ITURG = 3 - Goldberg (Rt) model (obsolete,
not supported).
ITURG = 4 - Spalart-Allmaras model
(LGS/DDADI).
ITURG = 5 - k-ω-TNT model (ADI, obsolete,
cannot be used with Runge Kutta).
ITURG = 6 - k-ω-TNT model (LGS/DDADI).
ITURG = 7 - k-ω-SST model (LGS/DDADI).
ITURG = 11 - RSM-JH model (LGS).
ITURG = 12 - RSM SSG/LRR-ω model
(LGS/DDADI).
ITURG = 13 - RSM MCL model (LGS).
ITURG = 14 - RSM GLVY model
(LGS/DDADI).

ITRANS Int 0 ITRANS = 1 toggles transition model γ-Reθt-
SST (works for ITURG = 7).

RTINIT Real 3.0 Initial undamped eddy viscosity; used for Gold-
berg and Spalart-Allmaras.

TUINT Real 0.001 Turbulence intensity for k-ω models.
VMUETINF Real 0.01 Free stream µt for k-ω models.
GDT TURBI Real GDTI Initial time step/CFL number for turbulence.
GDT TURBF Real GDTF Final time step/CFL number for turbulence.
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VISINP - Viscosity and Turbulence Input (continued)

Variable Name Type Def. Description
IDES Int 0 Detached eddy simulation flag.

IDES = 0 - RANS.
IDES = 1 - XLES.
IDES = 2 - DDES.
IDES = 3 - X-DDES.

ITORDD Int 1 Turbulence model spatial accuracy (relevant
only for ITURG = 4,6,7,11,12,13,14).
ITORDD = 1 - First order (and thin layer for
ITURG = 4,6).
ITORDD = 2 - Second order.

ITMIMP Int 1 Turbulence model matrix solver (relevant only
for ITURG = 4,6,7,12,14).
ITMIMP = 1 - DDADI inversion.
ITMIMP = 2 - LGS inversion.
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ELAINP - Elastic Input

Variable Name Type Def. Description
IELAST Int 0 IELAST=0 - Rigid;

IELAST=1 - Elastic. If exists, read file fort.800,
else, spline and write to file fort.801. The pro-
gram looks for the file genforces.in which con-
tains the initial/old generalized forces. File
genforces.in contains one real number per each
mode, in sequential lines.;
IELAST=2 - Same as IELAST = 1 but with
rotated modes (for large deformations);
IELAST<0 - Read/spline modes, write de-
formed mesh, and exit. The program looks
for the file xi.in which contains the prescribed
modal displacements. File xi.in has the same
format as genforces.in. The deformed mesh is
written to file fort.804.

IDEFMET Int 1 IDEFMET=1 - Simple shearing;
IDEFMET=2 - Boundary Element Method
(BEM)

ITER ELAST -
STAGE

Int 0 Number of flow iterations between consecutive
elastic deformations.
ITER ELAST STAGE = 1 - Dynamic aeroelas-
tic simulation;
ITER ELAST STAGE > 1 - Static aeroelastic
analysis; ITER ELAST STAGE = 0 - No elas-
tic deformations.

ELAST FACT Real 1.0 Factor multiplying all the eigenvalues. Use with
care, at your own risk.

DAMPING Array 0.0 Structural damping factor for dynamic aeroe-
lasticity (ζ, per mode).

SUBINP - Sub-domain and Flap Input

Variable Name Type Def. Description
NSUBD Int 0 Number of sub-domains.
NFLAP Int 0 Number of flaps.
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SDFINP - 6 DOF Input

Variable Name Type Def. Description
GFACX Real 0.0 Load factor.
GFACY Real 0.0 Load factor.
GFACZ Real 1.0 Load factor.
NSDFSTAR Int 0 Starting point for 6dof simulation.
IQUATERNION Int 1 Quaternion flag.

IQUATERNION = 0 - Euler angles.
IQUATERNION = 1 - Quaternions.

MLPINP - Multi-Level Parallelism Input

Variable Name Type Def. Description
MLPOUTER Int 1 Number of groups for multi level parallelism.
MLINNER Int 1 Number of threads per group.

DEBINP - Debug Input

Variable Name Type Def. Description
DEBUGF Logical .FALSE. Debug flag.
IDEBUGL Int 0 Debug level.

CONVINP - Convergence Control Input

Variable Name Type Def. Description
RESDROP Real 3.0 Residual drop cutoff for dual-time stepping. If

RESDROP < 0, the cutoff is imposed on both
the mean flow and turbulence model equation
sets. If RESDROP > 0, the cutoff is imposed
on the mean flow equation set only.

ISIDC Int -1 Sum of zone weights for weighted conver-
gence control; Sub-iterations are continued un-
til the cumulative weights of converged zones is
above ISIDC (or the maximum number of sub-
iterations, NSUBITER, has been reached); If
ISIDC is the default then it is set to the total
number of zones within the program.
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CHIMINP - Chimera Input

Variable Name Type Def. Description
ADOTBEPS Real 0.02 Hole cutting tolerance.
ADOTBEPS1 Real 0.01 Hole cutting tolerance for caps.
ADOTBEPS2 Real 0.01 Hole cutting tolerance for caps.
TOLNODE Real 0.505 Node tolerance for regular search.
TOLCBC Real 0.505 Node tolerance for cell by cell search.
GRMSTOL Real 2.0 RMS tolerance for cell by cell search.
GFRMSTOL Real 4.0 RMS tolerance for forced points (FORCING).
K1FMAX Int 11 K level for forced points.
IS502N2N Int 0 Node to node flag for fort.502.

IS502N2N = 0 - fort.502 is a regular patched
grids file.
IS502N2N = 1 - fort.502 is a node to node
patched grids file.

IDOUBLEF Int 0 Chimera single/double fringe flag.
IDOUBLEF = 0 - Single fringe.
IDOUBLEF = 1 - Double fringe.

DELTA MAX -
DOCELL

Real 5.0 Delta max for DOCELL.

MAXITER DO-
CELL

Int 6 Maximum iterations for DOCELL.

MOTIONINP - Motion Input

Variable Name Type Def. Description
IDONGRID Int 0 Prescribed motion flag.

IDONGRID = 0 - No prescribed motion.
IDONGRID = 1 - Prescribed motion; The sub-
routine ngrid (user defined, see ngrid.f) is in-
voked with every step.

WDISINP - Wall Distance Solver Input (not used)

Variable Name Type Def. Description
EPSPWD Real 100.0 Not used.
ITERSWD Real 10000 Not used.
DTWD Real 10−3 Not used.
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SPLINP - Spline Input

Variable Name Reps. Def. Description
ITRANSALL Int 0 ITRANSALL=0 - Transformations apply to

aerodynamics model only;
ITRANSALL=1 - Transformations apply to
both aerodynamics as well as structural model.

IS FSP Int 0 Force spline. Not used.
IS TAS Int 0 IS TAS=1 - Compute spline transformation

matrix TAS. Write it into file TAS.DAT ;
IS TAS=0 - Read spline transformation matrix
from file TAS.DAT

NSSURF Int 1 Number of structural surfaces used in spline.
ISFLAG Int 1 ISFLAG=1-All structural grids reside in one

file grid s 100.dat and modes file is modes -
s 100.dat. Files spl 1xx.dat define the grid
numbers used in each structural surface spline,
where xx stands for the surface number.
ISFLAG=0 - Structural grids reside in separate
files, one per structural surface, named grid s -
1xx.dat and modes files are modes s 1xx.dat.

N MODES Int 1 Number of structural modes to spline
N RBMODES Int 0 Number of rigid body modes in the modes input

file that will be removed and not used in the
aeroelastic analysis

MFORM Int 1 Format of modes file.
MFORM=1 - Standard NASTRAN punch file.
MFORM=2 - ASTROS database ICE file
(obsolete).
MFORM=3 - ASTROS DMI (obsolete).
MFORM=4 - Flap mode (obsolete).
MFORM=5 - ZAERO free format.

SCALE Int 1.0 Factor transferring the length units of the struc-
tural model to meters. The coordinates of the
structural nodes, and the modes, are divided by
SCALE to transform them to meters.

SCALEM Int 1.0 Factor transferring the mass units of the struc-
tural model to kg. The generalized mass is di-
vided by (SCALEM*SCALE*SCALE).
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SPLINP - Spline Input (continued)

Variable Name Reps. Def. Description
SCALEA Int 1.0 Factor transferring the length units of the aero-

dynamic model to meters. The coordinates of
the aerodynamic grids are divided by SCALEA
to transform them to meters.

PLOT FAC-
TOR

Int 1.0 Factor multiplying the modes. For display only.

GSTINP - Gust Input

Variable Name Reps. Def. Description
IGUST Int 0 IGUST = 0 - No gust input

IGUST = 1 - Wagner function
IGUST = 2 - Kussner function (sharp-edge
gust)
IGUST = 3 - One-minus-cosine gust input.
wg = wg0 · (1−cos(2 ·π ·x/GGL). Note that the
max value this input function takes is 2 · wg0

IGUST = 4 - One-cycle sine gust input
IGUST = 5 - Prescribed gust input. The excita-
tion at each time step is read from file wgnf.dat
and multiplied by wg0 .
IGUST = 6 - Sinusoidal heave (not gust, all the
grid points heave together)

ALP GUST Real 0.0 Gust equivalent angle of attack, in degrees. The
gust input velocity is M · sinwg0

ISTEP0G Int 0 For gust restart run only - Iteration number
from which the current gust run is started (num-
ber of iterations in the previous gust run)

GGL Real 0.0 Gust gradient length
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TRMINP - Trim Input

Variable Name Type Def. Description
ITER TRIM -
STAGE

Int 0 Number of elastic iterations after which a trim
correction is performed

CL REQ Real 0.0 Required trim lift coefficient in a symmetric
2DOF trim analysis

CMY REQ Real 0.0 Required trim pitching moment coefficient
(about C.G.) in a symmetric 2DOF trim anal-
ysis
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EXCINP - Prescribed Modal/FLAP Excitation Input

Variable Name Type Def. Description
IEXC Int 0 IEXC = 0 - No prescribed excitation

IEXC = 1 - Modal ramp
IEXC = 2 - Modal step
IEXC = 3 - Modal sinusoidal
IEXC = 4 - Not implemented
IEXC = 5 - Modal prescribed excitation. The
excitation at each time step is read from file
wgnf.dat and multiplied by EXC XIMAX(N).
IEXC = 11 - Flap ramp
IEXC = 12 - Flap step
IEXC = 13 - Flap sinusoidal
IEXC = 14 - Not implemented
IEXC = 15 - Flap prescribed excitation. The
excitation at each time step is read from file
wgnf.dat and multiplied by XIFLAP(N).

EXC FREQ Array 0.0 Excitation frequency for sinusoidal modal/flap
excitation, for each mode/flap (for modal exci-
tation repeats N MODES-N RBMODES times)

EXC XIMAX Array 0.0 Excitation modal amplitude, for each mode (re-
peats N MODES-N RBMODES times). In case
of flap excitation EXC XIMAX is not used. The
excitation amplitude is set by parameter XI-
FLAP in file flap.i

VTIME0 Real 0.0 End time of the analysis from which the current
analysis is restarted

VTIME1 Real 0.0 For ramp-type excitation, time of ramp up start
VTIME2 Real 0.0 For ramp-type excitation, time of ramp up end
VTIME3 Real 0.0 For ramp-type excitation, time of ramp down

start
VTIME4 Real 0.0 For ramp-type excitation, time of ramp down

end
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DSCRTFRCINP - Prescribed Discrete Force Input

Variable Name Type Def. Description
NDISCRETEFORCE Int 0 Number of discrete forces

Each force is prescribed through a file
named discreteforcefile [100 + force num-
ber].in (see Appendix D.11)

DFTIME0 Real 0.0 Time of starting point for discrete force
action

I DF SUB DOMAIN array -1 Discrete force associated sub-domain
F DISCRETE X array 0.0 X coordinate of force (must be within

the bounds as appear in the file body ex-
tents.dat)

F DISCRETE Y array 0.0 Y coordinate of force (must be within
the bounds as appear in the file body ex-
tents.dat)

F DISCRETE Z array 0.0 Z coordinate of force (must be within
the bounds as appear in the file body ex-
tents.dat)

Israeli Computational Fluid Dynamics Center LTD



Input Files 107

C.3 Array Input File eznssa.i

The following section includes a brief description of the array input file. The EZNSS

Glyph – a Tcl/Tk based script – that runs using the Gridgen package, allows to set

up the array input file and to generate a Database.

This input file is used for individual zone or sub-domain input. It also serves as a

means to override the automatic topology detection as well as to change the default

boundary conditions.

IVIS - Zonal viscosity flag

1st 2nd 3rd Description
Zone id 0/1 N/A 0 - Inviscid

1 - Viscous
1 - Thin layer approximation

IVISBC - Facial viscosity flag

1st 2nd 3rd Description
Zone id Face id (1-6) 0/1 0 - Inviscid

1 - ξmin 1 - Viscous
2 - ξmax

3 - ηmin

4 - ηmax

5 - ζmin

6 - ζmax

ITUR - Zonal turbulence flag

1st 2nd 3rd Description
Zone id 0-7 N/A 0 - Laminar

1 - Baldwin-Lomax
2 - Degani-Schiff
3 - Goldberg Rt

4 - Spalart-Allmaras
5 - k − ω-TNT (ADI)
6 - k − ω-TNT (LGS)
7 - k − ω-SST
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IWING - Zonal wing flag

1st 2nd 3rd Description
Zone id Wing flag N/A See Chapter 3 for a full descrip-

tion of possible flags

I2ZWING - Two-zone, H-type topology wing

1st 2nd 3rd Description
Zone id Zone id N/A Matching zone number

ICUT - Collapsed edge in the ξ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No cut boundary conditions

for ξ
1 - Cut boundary condition for
ξmin

2 - Cut boundary condition for
ξmax

12 - Cut boundary condition for
ξmin and ξmax

IAX - Axis edge in the ξ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No axis boundary conditions

for ξ
1 - Axis boundary condition for
ξmin

2 - Axis boundary condition for
ξmax

12 - Axis boundary condition for
ξmin and ξmax

KAX - Axis edge in the ζ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1 N/A 0 - No axis boundary conditions

for ζ
1 - Axis boundary condition for
ζmin
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JPER - Periodicity in the η coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1 N/A 0 - Non-periodic

1 - Periodic

ISTAR - Wall starting ξ coordinate

1st 2nd 3rd Description
Zone id ISTAR N/A Wall boundary conditions are ap-

plied from this point onward

IEND - Wall ending ξ coordinate

1st 2nd 3rd Description
Zone id IEND N/A Wall boundary conditions are ap-

plied up to this point

JTIPL - Wall starting η coordinate

1st 2nd 3rd Description
Zone id JTIPL N/A Wall boundary conditions are ap-

plied from this point onward

JTIPR - Wall ending η coordinate

1st 2nd 3rd Description
Zone id JTIPR N/A Wall boundary conditions are ap-

plied up to this point

ISTARFM - Starting ξ coordinate for force and moment calculations

1st 2nd 3rd Description
Zone id ISTARFM N/A Forces and moments are calcu-

lated from this point onward

IENDFM - Ending ξ coordinate for force and moment calculations

1st 2nd 3rd Description
Zone id IENDFM N/A Forces and moments are calcu-

lated up to this point

Israeli Computational Fluid Dynamics Center LTD



Input Files 110

JTIPLFM - Starting η coordinate for force and moment calculations

1st 2nd 3rd Description
Zone id JTIPLFM N/A Forces and moments are calcu-

lated from this point onward

JTIPRFM - Ending η coordinate for force and moment calculations

1st 2nd 3rd Description
Zone id JTIPRFM N/A Forces and moments are calcu-

lated up to this point

KSTAR - Wall starting ζ coordinate

1st 2nd 3rd Description
Zone id KSTAR N/A Wall boundary conditions are ap-

plied from this point onward

KEND - Wall ending ζ coordinate

1st 2nd 3rd Description
Zone id KEND N/A Wall boundary conditions are ap-

plied up to this point

IOUT - In/out boundary conditions in the ξ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No in/out boundary condi-

tions for ξ
1 - Zeroth order extrapolation for
ξmin

2 - Zeroth order extrapolation for
ξmax

12 - Zeroth order extrapolation
for ξmin and ξmax
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JOUT - In/out boundary conditions in the η coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No in/out boundary condi-

tions for η
1 - Zeroth order extrapolation for
ηmin

2 - Zeroth order extrapolation for
ηmax

12 - Zeroth order extrapolation
for ηmin and ηmax

100 - Turkel type boundary con-
ditions for ηmin and ηmax

KOUT - In/out boundary conditions in the ζ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No in/out boundary condi-

tions for ζ
1 - Zeroth order extrapolation for
ζmin

2 - Zeroth order extrapolation for
ζmax

12 - Zeroth order extrapolation
for ζmin and ζmax

100 - Turkel type boundary con-
ditions for ζmin and ζmax

IFSBC - Free stream boundary conditions in the ξ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No free stream boundary con-

ditions for ξ
1 - Free stream boundary condi-
tions for ξmin

2 - Free stream boundary condi-
tions for ξmax

12 - Free stream boundary condi-
tions for ξmin and ξmax
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JFSBC - Free stream boundary conditions in the η coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No free stream boundary con-

ditions for η
1 - Free stream boundary condi-
tions for ηmin

2 - Free stream boundary condi-
tions for ηmax

12 - Free stream boundary condi-
tions for ηmin and ηmax

KFSBC - Free stream boundary conditions in the ζ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No free stream boundary con-

ditions for ζ
1 - Free stream boundary condi-
tions for ζmin

2 - Free stream boundary condi-
tions for ζmax

12 - Free stream boundary condi-
tions for ζmin and ζmax

IWALL - Wall boundary conditions in the ξ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No wall boundary conditions

for ξ
1 - Wall boundary conditions for
ξmin

2 - Wall boundary conditions for
ξmax

12 - Wall boundary conditions for
ξmin and ξmax
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JWALL - Wall boundary conditions in the η coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No wall boundary conditions

for η
1 - Wall boundary conditions for
ηmin

2 - Wall boundary conditions for
ηmax

12 - Wall boundary conditions for
ηmin and ηmax

KWALL - Wall boundary conditions in the ζ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No wall boundary conditions

for ζ
1 - Wall boundary conditions for
ζmin

2 - Wall boundary conditions for
ζmax

12 - Wall boundary conditions for
ζmin and ζmax

ISYM - Symmetry boundary conditions in the ξ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No symmetry boundary con-

ditions for ξ
1 - Symmetry boundary condi-
tions for ξmin

2 - Symmetry boundary condi-
tions for ξmax

12 - Symmetry boundary condi-
tions for ξmin and ξmax
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JSYM - Symmetry boundary conditions in the η coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No symmetry boundary con-

ditions for η
1 - Symmetry boundary condi-
tions for ηmin

2 - Symmetry boundary condi-
tions for ηmax

12 - Symmetry boundary condi-
tions for ηmin and ηmax

IJYSYM - Special hole cutting; Invoked ONLY when ISYM=0 & JSYM=0

1st 2nd 3rd Description
Zone id -1/0/1 N/A 0 - No action

-1 - All grid points whose Y
coordinate is less than zero are
blanked (and their neighbors)
1 - All grid points whose Y co-
ordinate is greater than zero are
blanked (and their neighbors)

ITHICK1 - Hole cutting lower ξ limit

1st 2nd 3rd Description
Zone id
(hole
cutter)

Zone id (sub-
ject)

I level Lower limit for hole cutting; every
grid point in the second zone that
is found below the I level in the
first zone is marked as a hole

ITHICK2 - Hole cutting upper ξ limit

1st 2nd 3rd Description
Zone id
(hole
cutter)

Zone id (sub-
ject)

I level Upper limit for hole cutting; ev-
ery grid point in the second zone
that is found above the I level in
the first zone is marked as a hole
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JTHICK1 - Hole cutting lower η limit

1st 2nd 3rd Description
Zone id
(hole
cutter)

Zone id (sub-
ject)

J level Lower limit for hole cutting; every
grid point in the second zone that
is found below the J level in the
first zone is marked as a hole

JTHICK2 - Hole cutting upper η limit

1st 2nd 3rd Description
Zone id
(hole
cutter)

Zone id (sub-
ject)

J level Upper limit for hole cutting; ev-
ery grid point in the second zone
that is found above the J level in
the first zone is marked as a hole

KTHICK1 - Hole cutting lower ζ limit

1st 2nd 3rd Description
Zone id
(hole
cutter)

Zone id (sub-
ject)

K level Lower limit for hole cutting; every
grid point in the second zone that
is found below the K level in the
first zone is marked as a hole

KTHICK2 - Hole cutting upper ζ limit

1st 2nd 3rd Description
Zone id
(hole
cutter)

Zone id (sub-
ject)

K level Upper limit for hole cutting; ev-
ery grid point in the second zone
that is found above the K level in
the first zone is marked as a hole

KBODY - K level for hole cutting body definition

1st 2nd 3rd Description
Zone id K level N/A K level that defines the exten-

sions of the body definition for
hole cutting

IJET - Jet flag in the ξ direction

1st 2nd 3rd Description
Zone id 0/1 N/A 0 - No jet in the ξ direction

1 - Jet boundary conditions in the
ξ direction
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JSJET - Starting η coordinate of the jet

1st 2nd 3rd Description
Zone id J level N/A Jet is implemented starting from

this point

JEJET - Ending η coordinate of the jet

1st 2nd 3rd Description
Zone id J level N/A Jet is implemented up to this

point

KSJET - Starting ζ coordinate of the jet

1st 2nd 3rd Description
Zone id K level N/A Jet is implemented starting from

this point

KEJET - Ending ζ coordinate of the jet

1st 2nd 3rd Description
Zone id K level N/A Jet is implemented up to this

point

PJET - Pressure of the jet - obsolete (see Appendix D.10 for jet inputs)

1st 2nd 3rd Description
Zone id Pressure N/A Pressure of the jet

TJET - Temperature of the jet - obsolete (see Appendix D.10 for jet inputs)

1st 2nd 3rd Description
Zone id Temperature N/A Temperature of the jet

FJET - Mass flow rate of the jet - obsolete (see Appendix D.10 for jet inputs)

1st 2nd 3rd Description
Zone id Pressure N/A Mass flow rate of the jet

RTJET - Turbulence intensity factor of the jet

1st 2nd 3rd Description
Zone id Jet turbulence

intensity factor
N/A Used for S-A, k − ω, and RSM

models
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KCAVITY - Cavity boundary conditions in the ζ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1 N/A 0 - No cavity boundary conditions

for ζ
1 - Cavity boundary conditions
for ζmin

ISCAVITY - Cavity starting ξ coordinate

1st 2nd 3rd Description
Zone id ISCAVITY N/A Wall boundary conditions are ap-

plied from ξ = 1 up to ξ =
ISCAV ITY

IECAVITY - Cavity ending ξ coordinate

1st 2nd 3rd Description
Zone id IECAVITY N/A Wall boundary conditions are ap-

plied from ξ = IECAV ITY up
to ξ = IDIM

JSCAVITY - Cavity starting η coordinate

1st 2nd 3rd Description
Zone id JSCAVITY N/A Wall boundary conditions are ap-

plied from η = 1 up to η =
JSCAV ITY

JECAVITY - Cavity ending η coordinate

1st 2nd 3rd Description
Zone id JECAVITY N/A Wall boundary conditions are ap-

plied from η = JECAV ITY up
to η = JDIM
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ISUBDPZ - Primary zone for this zone

1st 2nd 3rd Description
Zone id Zone id pri-

mary zone
N/A Currently not utilized

ISUBD - Sub-domain number for this zone

1st 2nd 3rd Description
Zone id Sub-domain id N/A This zone is a part of this sub-

domain

SUBDSREF - Reference area for sub-domain

1st 2nd 3rd Description
Sub-
domain
id

Reference area N/A Reference area for this sub-
domain

SUBDCREF - Reference length for sub-domain

1st 2nd 3rd Description
Sub-
domain
id

Reference
length

N/A Reference length for this sub-
domain

SUBDX0 - Reference point for moment calculations for sub-domain

1st 2nd 3rd Description
Sub-
domain
id

X coordinate N/A X coordinate for sub-domain ref-
erence point

SUBDY0 - Reference point for moment calculations for sub-domain

1st 2nd 3rd Description
Sub-
domain
id

Y coordinate N/A Y coordinate for sub-domain ref-
erence point

SUBDZ0 - Reference point for moment calculations for sub-domain

1st 2nd 3rd Description
Sub-
domain
id

Z coordinate N/A Z coordinate for sub-domain ref-
erence point
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BXFAC - Box factor for body hole cutting

1st 2nd 3rd Description
Zone id BXFAC N/A X coordinate direction factor;

Bounding box of the body (for
hole cutting purposes only) is
multiplied by this factor

BYFAC - Box factor for body hole cutting

1st 2nd 3rd Description
Zone id BY FAC N/A Y coordinate direction factor;

Bounding box of the body (for
hole cutting purposes only) is
multiplied by this factor

BZFAC - Box factor for body hole cutting

1st 2nd 3rd Description
Zone id BZFAC N/A Z coordinate direction factor;

Bounding box of the body (for
hole cutting purposes only) is
multiplied by this factor

IBODY - Assign zone to BODY

1st 2nd 3rd Description
Zone id Body id N/A Used to assign the body number

to the zone; Zones that belong to
the same body do not cut holes
in each other and cut holes in all
other meshes in a different man-
ner
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IDOHOLES - Hole cutting flag

1st 2nd 3rd Description
Zone id
(subject)

Zone id (hole
cutter)

0/1 100/101
200/201

0 - No holes are cut in this subject
by this cutter
1 - Holes are cut in this subject
by this cutter
100 - If diagonal is set to 100 then
no holes are cut through this zone
101 - If diagonal is set to 101 then
this zone does not cut holes in any
zone
200 - If diagonal is set to 200 then
everything is set to 0
201 - If diagonal is set to 101 then
everything is set to 1

IDOFBCS - Face zonal boundary conditions flag

1st 2nd 3rd Description
Zone id
(recipi-
ent)

Zone id (donor) 0/1 0 - Recipient cannot receive
boundary values from donor

1 - Recipient can receive bound-
ary values from donor; If diago-
nal is set to 0/1 then all donors
receive the same value

ITURK1 - Inflow/Outflow Turkel boundary conditions for ξmin

1st 2nd 3rd Description
Zone id 0/1/-1 N/A 0 - Nothing

1 - Outflow
-1 - Inflow

ITURK2 - Inflow/Outflow Turkel boundary conditions for ξmax

1st 2nd 3rd Description
Zone id 0/1/-1 N/A 0 - Nothing

1 - Outflow
-1 - Inflow
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IRIEMANN - Inflow/Outflow Riemann boundary conditions in the ξ direction

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - Nothing

1 - Riemann boundary conditions
for ξmin

2 - Riemann boundary conditions
for ξmax

2 - Riemann boundary conditions
for ξmin and ξmax

JRIEMANN - Inflow/Outflow Riemann boundary conditions in the η direction

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - Nothing

1 - Riemann boundary conditions
for ηmin

2 - Riemann boundary conditions
for ηmax

2 - Riemann boundary conditions
for ηmin and ηmax

KRIEMANN - Inflow/Outflow Riemann boundary conditions in the ζ direction

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - Nothing

1 - Riemann boundary conditions
for ζmin

2 - Riemann boundary conditions
for ζmax

2 - Riemann boundary conditions
for ζmin and ζmax
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IINLET - Inlet boundary condition flag

1st 2nd 3rd Description
Zone id 0/1/2 N/A 0 - Nothing

1 - Inlet boundary condition for
ξmin

2 - Inlet boundary condition for
ξmax

101 - Riemann based inlet bound-
ary condition for ξmin

102 - Riemann based inlet bound-
ary condition for ξmax

PEXIT - Pressure value for inlet

1st 2nd 3rd Description
Zone id PEXIT N/A Value of pe

p∞
. In use by

IINLET , ITURK1, ITURK2,
and MASSFLOW

MASSFLOW - Mass flow rate for inlet (see Appendix D.9)

1st 2nd 3rd Description
Zone id MASSFLOW N/A Mass flow rate

IZOM - Convergence control weighting

1st 2nd 3rd Description
Zone id IZOM N/A Weight of this zone for dual-time

convergence control purposes

IRUNFLOW - Flow solution flag

1st 2nd 3rd Description
Zone id 0/1 N/A 0 - No flow solution for this zone

(“frozen flow solution”)
1 - Normal flow solution
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IREDOHOLES - Redoing holes flag

1st 2nd 3rd Description
Zone id 0/1 N/A 0 - Do not conduct holes cutting

except for the first step
1 - Conduct hole cutting after ev-
ery mesh change

IREDOZBCS - Redoing zonal boundary conditions flag

1st 2nd 3rd Description
Zone id 0/1 N/A 0 - Do not search for Chimera in-

terpolation stencils except for the
first step
1 - Repeat the search with every
mesh change

IDOBOXHOLES - Box hole cutting flag

1st 2nd 3rd Description
Zone id
(subject)

Box id (hole
cutter)

0/1 0 - Do not cut holes

1 - Cut holes

IDOANTIHOLES - Anti-hole flag

1st 2nd 3rd Description
Zone id
(subject)

Box id (hole
negator)

0/1 0 - Do not negate holes

1 - Negate holes

Israeli Computational Fluid Dynamics Center LTD



Input Files 124

C.4 Collar Grid Generation Input File cgg.i

This section contains the input for collar grid generation using EZNSS. The code can

generate a C-type mesh for a C-C type wing or C-H type wing that penetrates a body

or an O-type mesh for a C-O type wing that penetrates a body. For the program

to invoke the elliptic grid generation, the user must supply a cgg.i file (whose input

parameters are described below) and must delete the file fort.503.

ISUB1 - Left edge connectivity ( ξmin or ηmin)

1st 2nd Description
Zone id (wing) Zone id (body) Generate a collar grid for that specific wing

body intersection at ξmin or ηmin (depending
on JPER of the wing)

ISUB2 - Right edge connectivity ( ξmax or ηmax)

1st 2nd Description
Zone id (wing) Zone id (body) Generate a collar grid for that specific wing

body intersection at ξmax or ηmax (depending
on JPER of the wing)

ICDADD - Added wake points for C type collar

1st 2nd Description
Zone id (collar) ICDADD Number of wake points added to the trailing

edge intersection point. Ignored when O type
collar is generated

JCD - Collar dimensions in the ξ or η coordinate direction

1st 2nd Description
Zone id (collar) JCD Dimension of the collar grid. For O type grid,

dimension in the ξ direction, for C type grid,
dimension of η direction

KCD - Collar dimensions in the ζ coordinate direction

1st 2nd Description
Zone id (collar) KCD Dimension of the collar grid in the ζ direction
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JDTOP - Wing grid line for collar grid edge

1st 2nd Description
Zone id (collar) JDTOP For O type mesh, ξ coordinate for collar grid

edge, for C type mesh, η coordinate for the
edge (based on the wing grid)

KDTOP - Wing grid line for collar grid edge

1st 2nd Description
Zone id (collar) KDTOP ζ coordinate for collar grid edge, for C type

mesh, (based on the wing grid)

ITEGS - Number of iterations for the elliptic solver

1st 2nd Description
Zone id (collar) ITEGS Number of iterations for the elliptic grid

solver

OMEGS - First relaxation parameter

1st 2nd Description
Zone id (collar) 1.0-2.0 Over-relaxation parameter. For coarse

meshes use 1.5, for more dense meshes may
go closer to 2.0

RELEGS - Second relaxation parameter

1st 2nd Description
Zone id (collar) > 0.0 Relaxation parameter. Behaves as inverse

time step. Typical values should be around
0.01-0.001. Use higher values for large
stretching
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C.5 Six Degrees of Freedom Motion Simulation

Input File 6dof.i

The 6 DOF input file that is described below is necessary for 6 DOF motion simula-

tion. Its existence sets the right flags for the simulation. In addition, it is necessary

to set the appropriate sub-domain information in the eznssa.i file . Note that the

number of sub domains is set in the main input file by setting NSUBD to the number

of sub domains.

INERTIAM - Sub-domain moment of inertia matrix

1st 2nd 3rd 4th Description
Row Column Sub-domain id Ixx Iyy Iyz

Ixy Ixz Iyz

Enter the inertia moment matrix
components of the sub-domains
one by one

IDO6DOF - 6 DOF activation flag

1st 2nd Description
Sub-domain id 0/1 0 - Not activated

1 -Activated

TIME6DOF - 6 DOF activation flag by time

1st 2nd Description
Sub-domain id TIME6DOF 6 DOF simulation for this sub-domain starts

after the time is greater than TIME6DOF

FMASS - Sub-domain mass

1st 2nd Description
Sub-domain id Mass Mass of sub-domain in Newtons

RCREF - Sub-domain reference length

1st 2nd Description
Sub-domain id RCREF Reference length for dimensionless coeffi-

cients
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RSREF - Sub-domain reference area

1st 2nd Description
Sub-domain id RSREF Reference area for dimensionless coefficients

FEJECTX - Sub-domain ejection force

1st 2nd Description
Sub-domain id FEJECTX Ejection force component (X coordinate di-

rection) for the sub-domain

FEJECTY - Sub-domain ejection force

1st 2nd Description
Sub-domain id FEJECTY Ejection force component (Y coordinate di-

rection) for the sub-domain

FEJECTZ - Sub-domain ejection force

1st 2nd Description
Sub-domain id FEJECTZ Ejection force component (Z coordinate di-

rection) for the sub-domain

FMEJECTX - Sub-domain ejection moment

1st 2nd Description
Sub-domain id FMEJECTX Ejection moment component (X coordinate

direction) for the sub-domain

FMEJECTY - Sub-domain ejection moment

1st 2nd Description
Sub-domain id FMEJECTY Ejection moment component (Y coordinate

direction) for the sub-domain

FMEJECTZ - Sub-domain ejection moment

1st 2nd Description
Sub-domain id FMEJECTZ Ejection moment component (Z coordinate

direction) for the sub-domain

EJECTSTR - Sub-domain ejection stroke

1st 2nd Description
Sub-domain id EJECTSTR Ejection force acts for that length
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POLYFORCE START - Starting point for polynomial forces

1st 2nd Description
Sub-domain id POLYFORCE -

START [seconds]
Starting point for prescribed forces and
moments through a polynomial. The poly-
nomials are entered through the file poly-
force.in

POLYFORCE END - Ending point for polynomial forces

1st 2nd Description
Sub-domain id POLYFORCE -

END [seconds]
Ending point for prescribed forces and mo-
ments through a polynomial

FORCEFILE START - Starting point for forces through files

1st 2nd Description
Sub-domain id FORCEFILE -

START [seconds]
Starting point for prescribed forces and
moments through a series of files. The
files are named forcefile [100 + sub-domain
id].in

FORCEFILE END - Ending point for forces through files

1st 2nd Description
Sub-domain id FORCEFILE -

END [seconds]
Ending point for prescribed forces and mo-
ments through files

FRACFORCE START - Starting point for fractional forces

1st 2nd Description
Sub-domain id FRACFORCE -

START [seconds]
Starting point for prescribed forces and
moments through a fraction of the aero-
dynamics forces and moments. The values
are entered through the file fracforce.in

FRACFORCE END - Ending point for fractional forces

1st 2nd Description
Sub-domain id FRACFORCE -

END [seconds]
Ending point for prescribed forces and mo-
ments through a fraction of the aerody-
namics forces and moments
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P6DOF - Sub-domain roll rate in body fixed coordinate system

1st 2nd Description
Sub-domain id P6DOF Initial roll rate for this sub-domain

Q6DOF - Sub-domain pitch rate in body fixed coordinate system

1st 2nd Description
Sub-domain id Q6DOF Initial pitch rate for this sub-domain

R6DOF - Sub-domain yaw rate in body fixed coordinate system

1st 2nd Description
Sub-domain id R6DOF Initial yaw rate for this sub-domain

PHID - Sub-domain roll rate in Cartesian coordinate system

1st 2nd Description
Sub-domain id PHID Initial roll rate for this sub-domain

THETAD - Sub-domain pitch rate in Cartesian coordinate system

1st 2nd Description
Sub-domain id THETAD Initial pitch rate for this sub-domain

PSID - Sub-domain yaw rate in Cartesian coordinate system

1st 2nd Description
Sub-domain id PSID Initial yaw rate for this sub-domain

PHI - Sub-domain roll angle in Cartesian coordinate system

1st 2nd Description
Sub-domain id PHI Initial roll angle for this sub-domain

THETA - Sub-domain pitch angle in Cartesian coordinate system

1st 2nd Description
Sub-domain id THETA Initial pitch angle for this sub-domain

PSI - Sub-domain yaw angle in Cartesian coordinate system

1st 2nd Description
Sub-domain id PSI Initial yaw angle for this sub-domain
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U6DOF - Sub-domain X direction velocity

1st 2nd Description
Sub-domain id U6DOF Initial velocity component for this sub-

domain

V6DOF - Sub-domain Y direction velocity

1st 2nd Description
Sub-domain id V6DOF Initial velocity component for this sub-

domain

W6DOF - Sub-domain Z direction velocity

1st 2nd Description
Sub-domain id W6DOF Initial velocity component for this sub-

domain

XPOS - Sub-domain location X coordinate

1st 2nd Description
Sub-domain id XPOS Initial location of center of gravity for this

sub-domain

YPOS - Sub-domain location Y coordinate

1st 2nd Description
Sub-domain id YPOS Initial location of center of gravity for this

sub-domain

ZPOS - Sub-domain location Z coordinate

1st 2nd Description
Sub-domain id ZPOS Initial location of center of gravity for this

sub-domain
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IXPOSL - X coordinate direction locking flag

1st 2nd Description
Sub-domain id 0/1 0 - Lock motion in X

1 - Perform motion as usual

IYPOSL - Y coordinate direction locking flag

1st 2nd Description
Sub-domain id 0/1 0 - Lock motion in Y

1 - Perform motion as usual

IZPOSL - Z coordinate direction locking flag

1st 2nd Description
Sub-domain id 0/1 0 - Lock motion in Z

1 - Perform motion as usual

IPHIL - Roll angle lock flag

1st 2nd Description
Sub-domain id 0/1 0 - Lock roll motion in body coordinates

1 - Perform motion as usual

ITHETAL - Pitch angle lock flag

1st 2nd Description
Sub-domain id 0/1 0 - Lock roll motion in body coordinates

1 - Perform motion as usual

IPSIL - Yaw angle lock flag

1st 2nd Description
Sub-domain id 0/1 0 - Lock roll motion in body coordinates

1 - Perform motion as usual
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IPIVOT - Pivot flag

1st 2nd Description
Sub-domain id 0/1 0 - No pivot

1 - Pivot

PIVOTX - Sub-domain pivot location X coordinate

1st 2nd Description
Sub-domain id PIVOTX X coordinate of pivot point position

PIVOTY - Sub-domain pivot location Y coordinate

1st 2nd Description
Sub-domain id PIVOTY Y coordinate of pivot point position

PIVOTZ - Sub-domain pivot location Z coordinate

1st 2nd Description
Sub-domain id PIVOTZ Z coordinate of pivot point position

IPIVOTANGLE - Pivot angle flag

1st 2nd Description
Sub-domain id 1/2/3 1 - Motion is allowed in ϕ only

2 - Motion is allowed in θ only
3 - Motion is allowed in ψ only

PIVOTANGLE - Sub-domain pivot angle

1st 2nd Description
Sub-domain id PIVOTANGLE Sub-domain’s motion is restricted to the

pivot location up to this angle

IDOMINDIST - Minimum distance calculation flag

1st 2nd Description
Sub-domain id 0/1 0 - No calculation

1 - Calculate minimum distance
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C.6 Virtual Body File Inputs eznssvb.i

The virtual body input file is used to set and control hole cutting using virtual bodies.

All virtual bodies should be placed in the file fort.507 using the regular PLOT3D

format. Without the existence of the input file all virtual body hole cutting is omitted.

Furthermore, all required hole cutting should be set explicitly since all default flags

are set to off.

IDOHOLESVB - Virtual body hole cutting flag

1st 2nd 3rd Description
Zone id
(subject)

Zone id (hole
cutter)

0/1 0 - No holes are cut in this subject
by this cutter
1 - Holes are cut in this subject
by this cutter

KTHICKVB - Virtual body hole cutting lower ζ limit

1st 2nd 3rd Description
Zone id
(hole
cutter)

Zone id (sub-
ject)

K level Lower limit for hole cutting; every
grid point in the second zone that
is found below the K level in the
first zone is marked as a hole

KBODYVB - Virtual body K level for hole cutting body definition

1st 2nd 3rd Description
Zone id K level N/A K level that defines the exten-

sions of the virtual body defini-
tion for hole cutting

ISUBDVB - Virtual body sub-domain number for this zone

1st 2nd 3rd Description
Zone id Sub-domain id N/A This zone is a part of this sub-

domain
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IAXVB - Virtual body axis edge in the ξ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No axis boundary conditions

for ξ
1 - Axis boundary condition for
ξmin

2 - Axis boundary condition for
ξmax

12 - Axis boundary condition for
ξmin and ξmax

IWINGVB - Virtual body zonal wing flag

1st 2nd 3rd Description
Zone id Wing flag N/A See Chapter 3 for a full descrip-

tion of possible flags

JPERVB - Virtual body periodicity in the η coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1 N/A 0 - Non-periodic

1 - Periodic

ISTARVB - Virtual body wall starting ξ coordinate

1st 2nd 3rd Description
Zone id ISTARVB N/A Wall boundary conditions are ap-

plied from this point onward

IENDVB - Virtual body wall ending ξ coordinate

1st 2nd 3rd Description
Zone id IENDVB N/A Wall boundary conditions are ap-

plied up to this point
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JTIPLVB - Virtual body wall starting η coordinate

1st 2nd 3rd Description
Zone id JTIPLVB N/A Wall boundary conditions are ap-

plied from this point onward

JTIPRVB - Virtual body wall ending η coordinate

1st 2nd 3rd Description
Zone id JTIPRVB N/A Wall boundary conditions are ap-

plied up to this point

ICUTVB - Virtual body collapsed edge in the ξ coordinate direction flag

1st 2nd 3rd Description
Zone id 0/1/2/12 N/A 0 - No cut boundary conditions

for ξ
1 - Cut boundary condition for
ξmin

2 - Cut boundary condition for
ξmax

12 - Cut boundary condition for
ξmin and ξmax
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C.7 Elliptic Collar Grid Update File Inputs ecgu.i

The elliptic collar grid update file is used for three purposes. The first, it updates

the collar grid upon an elastic deformation. The second, it provides a fort.893 file to

cover the gaps of overlapping holes. And last, it assists in the computation of forces

exerted on the gaps.

IMINU - Projection zone for ξmin

1st 2nd description
Collar zone id Projection zone id The ξmin coordinate of the collar

zone is projected onto the projec-
tion zone as assigned here

JMINU - Projection zone for ηmin

1st 2nd description
Collar zone id Projection zone id The ηmin coordinate of the collar

zone is projected onto the projec-
tion zone as assigned here

JMAXU - Projection zone for ηmax

1st 2nd description
Collar zone id Projection zone id The ηmax coordinate of the collar

zone is projected onto the projec-
tion zone as assigned here

KMINU - Projection zone for ζmin

1st 2nd description
Collar zone id Projection zone id The ζmin coordinate of the collar

zone is projected onto the projec-
tion zone as assigned here
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C.8 Spline Inputs in File spline.i

File spline.i includes the input data required for mapping the elastic modes from the

structural grid in which they are provided to the aerodynamic grid. The required

data includes: for each structural surface the type of spline (surface/beam); for each

aerodynamic surface the corresponding structural surface for spline; displacements

and rotations applied to the aerodynamic surface to align it with the structural sur-

faces (for spline purposes only), and plot factors for displaying the mapped modes.

Each variable has two entries described below.

For cases of constrained deformations, in which subdomains are connected rigidly

to a single point and are constrained to move rigidly with that point, the constraint

points (one for each such sub-domain) are defined via their x,y, and z coordinates,

and by the aerodynamic grid zone to which each sub-domain attaches.
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IS SS - Surface/Beam spline

1st 2nd description
Structural surface id 1/0 1-Surface spline

0-Beam spline

ISPLINE FROM - Which structural surface to spline from
1st 2nd description
Aero surface id 0/id of a structural

surface

DELTAX - Transformation of aero coordinate system, ∆x translation
1st 2nd description
Aero surface id translation ∆x in length units of the aero grid

DELTAY - Transformation of aero coordinate system, ∆y translation
1st 2nd description
Aero surface id translation ∆y in length units of the aero grid

DELTAZ - Transformation of aero coordinate system, ∆z translation
1st 2nd description
Aero surface id translation ∆z in length units of the aero grid

IROT1 - First rotation axis
1st 2nd description
Aero surface id First rotation axis 1-x axis; 2-y axis; 3-z axis

IROT2 - Second rotation axis
1st 2nd description
Aero surface id Second rotation axis 1-x axis; 2-y axis; 3-z axis

IROT3 - Third rotation axis
1st 2nd description
Aero surface id Third rotation axis 1-x axis; 2-y axis; 3-z axis
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DELTAPHI - First rotation angle
1st 2nd description
Aero surface id First rotation angle in degrees

Y0PHI - Center of rotation, y coordinate
1st 2nd description
Aero surface id Center of rotation, y

coordinate
in length units of the aero grid

Z0PHI - Center of rotation, z coordinate
1st 2nd description
Aero surface id Center of rotation, z

coordinate
in length units of the aero grid

DELTATHETA - Second rotation angle
1st 2nd description
Aero surface id Second rotation angle in degrees

X0THETA - Center of rotation, x coordinate
1st 2nd description
Aero surface id Center of rotation, x

coordinate
in length units of the aero grid

Z0THETA - Center of rotation, z coordinate
1st 2nd description
Aero surface id Center of rotation, z

coordinate
in length units of the aero grid

DELTAPSI - Third rotation angle
1st 2nd description
Aero surface id Third rotation angle in degrees

X0PSI - Center of rotation, x coordinate
1st 2nd description
Aero surface id Center of rotation, x

coordinate
in length units of the aero grid

Israeli Computational Fluid Dynamics Center LTD



Input Files 140

Y0PSI - Center of rotation, y coordinate
1st 2nd description
Aero surface id Center of rotation, y

coordinate
in length units of the aero grid

PLOT FACTORA - Plot factor
1st 2nd description
Mode id Factor multiplying

the mode for display
only

Real

SUBDXC - Constraint point, x coordinate
1st 2nd description
Sub-domain id Constraint point lo-

cation, x coordinate
in length units of the aero grid

SUBDYC - Constraint point, y coordinate
1st 2nd description
Sub-domain id Constraint point lo-

cation, y coordinate
in length units of the aero grid

SUBDZC - Constraint point, z coordinate
1st 2nd description
Sub-domain id Constraint point lo-

cation, z coordinate
in length units of the aero grid

NSUBDC - Aerodynamic zone to which the sub-domain attaches
1st 2nd description
Sub-domain id Aerodynamic zone id
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C.9 Flap Inputs in File flap.i

File flap.i includes the input data required for defining leading and trailing edge

control surfaces. The required data includes: Dimensions of a fictitious mesh on

which flap deflections are defined; for each flap - which aerodynamic zone it belongs

to, is the flap a leading/trailing edge flap, definition of the flap hinge (x,y coordinates

of the flap hinge at the root side and at the tip side), flap deflection.
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IFLAPDIM - I dimension of flap fictitious grid

1st 2nd description
Flap id IDIM I dimension of a fictitious grid

that is used to deflect the flap

JFLAPDIM - J dimension of flap fictitious grid

1st 2nd description
Flap id JDIM J dimension of a fictitious grid

that is used to deflect the flap

IFLAP - To which aerodynamic zone the flap belongs
1st 2nd description
Flap id Aerodynamic zone id

IFLAPLT - Leading/trailing edge flap

1st 2nd description
Flap id 1/-1 1-Trailing-edge flap

-1-Leading-edge flap

XFLAPR - x coordinate of the flap hinge at the root side

1st 2nd description
Flap id x coordinate in length units of the aero grid

YFLAPR - y coordinate of the flap hinge at the root side

1st 2nd description
Flap id y coordinate in length units of the aero grid

XFLAPT - x coordinate of the flap hinge at the tip side

1st 2nd description
Flap id x coordinate in length units of the aero grid

YFLAPT - y coordinate of the flap hinge at the tip side

1st 2nd description
Flap id y coordinate in length units of the aero grid

XIFLAP - flap deflection

1st 2nd description
Flap id flap deflection in degrees
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C.10 Rotor Inputs in File rotor.i

File rotor.i includes the input data required for defining a rotor. A special grid should

be generated for the rotor. The rotor disk is placed in between ξ = IROTORDISK

AND ξ = IROTORDISK + 1 and it spans up to ζ = KROTORDISK. The mesh

should then be generated accordingly, i. e., coordinate lines in that range should be

as straight as possible. The grid should be generated such that the coordinate ξ is

pointing in the direction of the flow. A hole must be cut around the rotor area in

all meshes except for the rotor mesh. This can be done using a virtual body or box

holes.

The mesh can be a mesh without a hub (similar to KAX = 1), in which case

IROTOR is negative, or with a hub, in which case IROTOR is positive. When the

absolute value od IROTOR is set to 3, the rotor local thrust coefficient,
dCT

dr̄
, local

power coefficient,
dCP

dr̄
, and local radial force coefficient,

dCR

dr̄
, are entered thorough

the file rotor blade.in. The format of the file is as follows: the first line starts with

the # sign followed by a space and the number of input entries; the second line starts

with the # sign and any header (chosen by the user, may omit the header); the third

line and onward contain the input in 4 columns, normalized local radius, local thrust

coefficient, local power coefficient, and local radial force coefficient (as in the following

example).

# 74

# x dCT_dx dCP_dx dCR_dx

0.253 -0.0292 -0.0100 -0.0000

0.263 -0.0293 -0.0102 -0.0000

0.273 -0.0293 -0.0104 -0.0000

. . . .

. . . .

. . . .

0.967 0.2836 0.2158 0.0000

0.977 0.2790 0.2198 0.0000

0.987 0.2625 0.2184 0.0000
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IROTOR - Rotor flag
1st 2nd description
Aerodynamic zone id -3, -2, -1, 0, 1, 2, 3 0 - No rotor

±1 - Simple disk model (uniform
pressure jump)
±2 - Variable pressure jump
(maximum at 3/4 disk radius
±3 - User defined through input
file (rotor blade.in)

IROTORDISK - ξ coordinate location of the rotor disk
1st 2nd description
Aerodynamic zone id ξ coordinate The rotor is placed between the

coordinates ξ and ξ + 1

KROTORDISK - ζ coordinate location of the rotor disk edge
1st 2nd description
Aerodynamic zone id ζ coordinate ζ coordinate of the disk edge

ROTORRADIUS - The radius of the rotor disk
1st 2nd description
Aerodynamic zone id Rotor disk radius

ROTORRPM - The RPM of the rotor
1st 2nd description
Aerodynamic zone id RPM

ROTORTHRUST - The thrust of the rotor
1st 2nd description
Aerodynamic zone id Rotor thrust Total rotor thrust. Distributed

via two linear functions, peeking
at mid radius.

ROTORPOWER - The power of the rotor
1st 2nd description
Aerodynamic zone id Rotor power

ROTORFR - Rotor disk radial force
1st 2nd description
Aerodynamic zone id Rotor disk radial force
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Appendix D

Data Files

D.1 Rationale

There are two main types of files, numbered files based on specific series and files that

are identified by names. Numbered data files are numbered according to the following

rationale. Single and double digit files contain global time history information. Triple

digit files are grid, solution, and other input/output files. Quadruple digit files contain

time history of the results of six degrees of freedom simulation and time history of

forces and moments.

D.2 Input Data Files

Grid files are named fort.501 - fort.505. The file fort.501 contains Chimera grids, the

file fort.502 contains patched grids, the file fort.503 contains elliptic collar grids, the

file fort.504 contains hyperbolic collar grids, and the file fort.505 contains Cartesian

grids. Another grid file, the virtual body grid file (named fort.507), is used to

define bodies for hole cutting. These bodies are not involved in the actual flow

calculations and their use is limited for the process of hole cutting only. Solution

files are named fort.511 - fort.515 where fort.511 is the solution file for grid file

fort.501 and so forth. Turbulent viscosity files are named fort.521 - fort.525, Rt

files are named fort.531 - fort.535 and γ files are named fort.541 - fort.545. The files
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fort.551 - fort.555 and fort.561 - fort.565 contain restart grid metrics for moving

grid computations. The files fort.571 - fort.575 contain wall distances.

In addition to the above files, there are two input files for static and dynamic

aeroelastic flow simulations. The file fort.800 contains the modes and eigenvalues,

whereas the file fort.808 contains initial modes and general forces.

D.3 Output Data Files

All files from the fort.500 series have corresponding output files that are names

fort.600 having exactly the last two digits. For example, the output γ file for an

elliptic collar grid would be names fort.643. When holes are generated a new series

of files is generated and is named fort.791, fort.792, and/or fort.795, depending on

the the corresponding grid file. The output file for aeroelastic modes and generalized

forces is named fort.818 (or fort.817 in case of a stop MONITOR command; in

that case the grid and solution files are named fort.26 and fort.27, respectively).

Convergence history is written into the files fort.7 (time vs. means square) and

fort.11 (iteration number vs. root mean square) and forces and moments time history

are written into the file fort.17. The format of the files fort.7 and fort.11 is the

time (or iteration number for fort.11) and L2NORM (or
√
L2NORM) for the file

fort.11) for all zones. The file fort.17 contains the time and then CX , CY , CZ , CMX,

CMY , CMZ, CL, and CD. Note, forces and moments in the fort.17 file are sums of

all forces and moments in all the zones.

The quadruple digit file series that correspond to sub-domains is numbered by

sub-domains (last 1, 2, or 3 digits). The fort.1000 series contain trajectory time

history, the fort.2000 series contain velocity time history, the fort.3000 series contain

the acceleration time history. The fort.8000 series contains forces and moments in

Cartesian coordinates while the fort.9000 series contains forces and moments in body

coordinates.

In addition, the fort.7000 file series contains time history for each zone, in a Carte-

sian coordinate system. The fort.804 file series contains modal deflections in forms of

surface grid files (this happens only when the input parameter ITER ELAT STAGE
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parameter is negative; the program stops after that). The fort.5000 series contains

surface collar grids for the possible generation of hyperbolic collar grids.

Convergence of sub-iterations in dual-time-stepping mode is reported in the fort.6000

file series. Each line of the file contains 8 columns. The first column is the time, the

second column is the number of sub-iteration that has been conducted, the next pair

of columns contain the residual drop of the mean flow equations with respect to the

maximum residual and the residual in the first sub-iteration, respectively. The next

pair contains the same information for the turbulence model equation(s). The last

pair is kept for historical reasons.

D.4 Files with Specific Designation

There are four diagnostic files named eznss.out, eznss.err, eznss.wrn, and eznss.dgn.

The six degrees of freedom simulation may require a restart file and this one is

6dofrest.in on input and 6dofrest.out on output. The grid extents and the body ex-

tents (ζ = 1) may be founds in the files extents.dat, body extents.dat, vb extents.dat,

and vb body extents.dat. Jacobian and time step information is found in the file ja-

cobian cfl.dat. The information is updated every ISTEPOUT steps or every step

when the DEBUG flag is set to .TRUE. and IDEBUGL is set to a value greater or

equal to 1.

D.5 Aeroelasticity Input Output Files

D.5.1 Input Files

Input files for spline:

1. Splined modes:

fort.800 - Modes splined to the aerodynamic grids. PLOT3D, unformatted,

DP. If this file exists, the code reads the modes from it, and does not compute

the spline. If the file does not exist the code computes the spline, using the

following files:
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2. Spline related parameters:

spline.i. See description of entries in section C.8.

3. Structural grids:

There are two methods of reading the structural grid and modes. Switching

between them is done by flag ISFLAG in the main input file eznss.i.defaults.

• ISFLAG = 0 - Reading grids from separate files for each structural com-

ponents. In this case all grid points are included in the spline.

• ISFLAG = 1 All grids are in a single file and all modal displacements are

in a single file, and there are separate files defining which grids are used in

spline of which surface.

The structural grid files are:

grid s 100.dat (old fort.21) for ISFLAG = 1; or

grid s 101.dat, grid s 102.dat, etc. (old fort.21 fort.22 etc.) for ISFLAG = 0.

File format is NASTRAN GRID format.

4. Modes:

mode s 100.dat (old fort.61) for ISFLAG = 1; or

mode s 101.dat, mode s 102.dat, etc. (old fort.61 fort.62 etc.) for ISFLAG = 0.

File formats can be:

• Nastran .pch file for MFORM = 1

• Astros ICE for MFORM = 2. This option is not maintained.

• Nastran DMI for MFORM = 3. This option is not maintained.

• Flap mode for MFORM = 4

• ZAERO free format for MFORM = 5

5. Nodes participating in spline:

spl 101.dat, spl 102.dat, etc. (old fort.31 fort.32 etc.) for ISFLAG = 1 only.

6. xi.in - Prescribed modal displacements for IELAST= -1 case.
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7. Flap related parameters:

flap.i. See description of entries in section C.9.

Other input files for AE analyses:

1. genforces.in - Initial generalized forces, modal displacements, and modal veloc-

ities (old fort.808). ASCII, list. An entry (in a separate line) for each mode.

D.5.2 Output Files

Output files from the spline computation:

1. mode a 101.dat, mode a 102.dat, etc. - mode 1,2, etc. mapped to the aerody-

namic surface grid and plotted on top of the surface grid. For plotting purposes.

ASCII, PLOT3D format.

2. mode d 101.dat, mode d 102.dat, etc. - mode 1,2, etc. mapped to the aerody-

namic surface grid, displacements only. For plotting purposes. ASCII, PLOT3D

format.

3. fort.801 - Modes splined to the aerodynamic grids. PLOT3D, unformatted, DP.

Generated by the spline routine. Can be moved into file fort.800 to be read by

the code for further analyses (to avoid recalculating the spline).

4. struct 100.dat - Structural nodes from file grid s 100.dat in PLOT3D, ASCII,

format. Used to check the structural input.

5. TAS.DAT - Transformation matrix. Once computed, the transformation matrix

can be used in further analyses of the same model (avoiding recalculating it),

by setting the ITAS = 0 flag in the main input file.

Other aeroelastic output files:

1. xi.hist - History of generalized displacements. One column per mode.

2. genforces.hist - History of generalized forces. One column per mode.
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3. flap a 101.dat, flap a 102.dat, etc. - For cases of deflected flaps only - flap 1,2,

etc. mapped to the aerodynamic surface grid and plotted on top of the surface

grid. For plotting purposes. ASCII, PLOT3D format.

4. flap d 101.dat, flap d 102.dat, etc. - For cases of deflected flaps only - flap 1,2,

etc. mapped to the aerodynamic surface grid, displacements only. For plotting

purposes. ASCII, PLOT3D format.
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D.6 Six Degrees of Freedom Motion Simulation

Input Files

The 6 dof suite provides the capability to prescribe forces and moments through input

files. There are three types of capabilities and associated files:

1. Forces and moments are 5th polynomial functions of times. The file is named

polyforce.in (see Figure D.1).

2. Forces and moments are explicitly prescribed through a series of input files.

The files are named forcefile [100 + sub-domain id].in (see Figure D.2).

3. Forces and moments are set as a fraction of the aerodynamic forces. The files

is named fracforce.in (see Figure D.3).
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# Polynomial input file format:

# A line starting with the symbol ’#’ signifies a comment

# You may have as many comments as you’d like

# You must have six lines of input per sub domain,

# each having 6 real number coefficients

# For example:

# 1st sub-domain

# FX coefficients

# a0 a1 a2 a3 a4 a5

0.0 0.0 0.0 0.0 0.0 0.0

# FY coefficients

# a0 a1 a2 a3 a4 a5

0.0 0.0 0.0 0.0 0.0 0.0

# FZ coefficients

# a0 a1 a2 a3 a4 a5

0.0 0.0 0.0 0.0 0.0 0.0

# MX coefficients

# a0 a1 a2 a3 a4 a5

0.0 0.0 0.0 0.0 0.0 0.0

# MY coefficients

# a0 a1 a2 a3 a4 a5

0.0 0.0 0.0 0.0 0.0 0.0

# MZ coefficients

# a0 a1 a2 a3 a4 a5

0.0 0.0 0.0 0.0 0.0 0.0

Figure D.1: Polynomial input file format (polyforce.in)

Israeli Computational Fluid Dynamics Center LTD



Data Files 153

# Force input file naming convention :

# forcefile_(100 + sub_domain_number).in

# Force input file format :

# A line starting with the symbol ’#’ signifies a comment

# You may have as many comments as you’d like

# You must have at least 2 lines of input,

# each having 7 real number coefficients

# For example:

# time fx fy fz mx my mz

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure D.2: Force file input file format (forcefile 101.in)
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# Fractional force input file format:

# A line starting with the symbol ’#’ signifies a comment

# You may have as many comments as you’d like

# You must have one line of input per sub domain,

# each having 6 real number coefficients

# For example:

# 1st sub-domain

# Fx Fy Fz Mx My Mz

0.0 0.0 0.0 0.0 0.0 0.0

Figure D.3: Fractional input file format (fracforce.in)

D.7 Non-Standard Atmosphere Input File

EZNSS calculates the thermodynamic flow conditions based on the entered altitude

and standard atmosphere tables. Non standard atmosphere conditions may be entered

through the file non standard atmosphere.dat file. The input parameters are as follows

(note that no defaults are allowed for RTINF and RPINF and that if Cp∞ is set to

any negative number it will be calculated based on Equation 2.31 with the parameters

as described in Equations 2.32 and 2.33. ):

NSAINP - Non Standard Atmosphere Input

Variable Name Type Def. Description
RPINF Real None allowed Pressure
RTINF Real None allowed Temperature
R GAS Real 287.0 Specific gas constant
VMUE C1 Real 1.458E-6 Viscosity Sutherland law coefficient
VMUE C2 Real 110.3 Viscosity Sutherland law coefficient
HCKAP C1 Real 2.495E-3 Heat conduction law coefficient
HCKAP C2 Real 194.0 Heat conduction law coefficient
CPINF Real -1.0 Free stream specific heat (Cp∞)
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D.8 Specific Heat Polynomial Coefficients Input

File

The polynomial coefficients that are used to evaluate the specific heats are based on

the assumption that the fluid is air. By utilizing the non-standard atmosphere input

file and the file named cp user input.dat, one can enter the coefficients for another

perfect gas other than air. The description of the input variables is as follows:

CPINP - Cp Polynomial Input

Variable Name Type Def. Description
A1A Real 3.08792717E+00 Coefficients
A2A Real 1.24597184E-03 Coefficients
A3A Real - 4.23718945E-07 Coefficients
A4A Real 6.74774789E-11 Coefficients
A5A Real - 3.97076972E-15 Coefficients
A1B Real 3.56839620E+00 Coefficients
A2B Real - 6.78729429E-04 Coefficients
A3B Real 1.55371476E-06 Coefficients
A4B Real - 3.29937060E-12 Coefficients
A5B Real - 4.66395387E-13 Coefficients

Note that A1A, A2A, A3A, A4A, and A5A pertain to the polynomial below a

temperature of T = 1000K while A1B, A2B, A3B, A4B, and A5B to the polynomial

above that temperature. The user is referred to Section 2.2.6 for the description of

the polynomial and the manner in which real gas effects are implemented.

D.9 Inlet Mass Flow Rate Control Input File

The feature of mass flow rate control through an inlet is administered through the

BCIINLET flag, the MASSFLOW flag, and the PEXIT flag (see Appendix C.3

for details). The dedicated input file is named massflow.in. The value of PEXIT

is used as an initial guess and is iterated. The resulting PEXIT is output to the

file pexit.out. Upon restart this file should be moved to pexit.in. The file contains

PEXIT for all the zones (including ones without a prescribed MASSFLOW rate).
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MASSINP - Mass Flow Rate Input

Variable Name Type Def. Description
ISTARTMASS Integer 10000 Starting step for mass flow control iterations.
ISTEPMASS Integer 1000 Frequency of mass flow corrections.
FACTMASSINC Real 0.1 Mass flow correction factor: ∆Pexit = ∆ρ̄u ×

(ρu)∞ × FACTMASSINC

D.10 Jet Input Files

Implementing a jet requires a dedicated zone for the jet. More specifically, the ded-

icated zone must be circular with a KAX boundary condition set to KAX = 1

(should be automatically identified but can be manually set by the array file, see

Appendix C.3 for more details).The jet may be applied at ξmin through a series of

input files whose description follows. The part of ξmin that is not covered through the

jet may be set as a wall by using the IWALL boundary condition simultaneously.

The jet conditions are given as a function of r, the distance of each point from the

jet center. The extents of the jet in terms of η and ζ are given by the input arrays

JSJET , JEJET , KSJET , KEJET (see Appendix C.3 for details).

The jet conditions are supplied through the files: density.dat, press.dat, uVel.dat,

and vVel.dat. Each file contains the dimensional variables at the jet exit as a function

of the distance from the jet center. The jet center is located at the axis of grid, i.e,

r (ζ = 1) = 0. The two velocity components are the axial (in the file uVel.dat ) and

radial (in the file vVel.dat ) components. Both velocity components refer to the grid

coordinates. In other words, the velocity component in the file uVel.dat is the velocity

in the ξ direction. An example for the files structure is given in Figure D.4. In this

example, the density at the jet exit is set to be constant, ρjet = 1.225, in the range

0.0 < r < 0.03 and linearly changes between ρjet = 1.225 and ρjet = 1.115 in the

range 0.03 < r < 0.06. The header of the file contains the number of input lines in

the file (not counting the header).
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3

0.0 1.225

0.03 1.225

0.06 1.115

Figure D.4: An example of a typical input file (density.dat)

D.11 Discrete Force Input Files

Discrete forces acting on certain surface panels can be modeled using the discrete

force feature. The location of the force is prescribed in the main input file. The

actual force itself is prescribed a series of input files named: discreteforcefile [100 +

force number].in.

# Point force input file naming convention :

# pointforcefile_(100 + point_force_file_number).in

# Point force input file format :

# A line starting with the symbol ’#’ signifies a comment

# You may have as many comments as you’d like

# You must have at least 2 lines of input each having 2 real numbers.

# One for the time and second for the discrete force

# For example:

# time discrete_force

0.0 0.0

0.0 0.0

Figure D.5: Discrete force input file format (discreteforcefile [100 + force number].in)

Each of the discrete forces may be associated to a sub-domain using the array

I DF SUB DOMAIN (see description of the main input file in Section C.2). If

the discrete force is associated to a sub-domain it acts us an injection force (and

moment when applicable). It preempts the ejection force moment and stroke that are

prescribed in the 6dof.i file
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D.12 Sectional Force and Moment Output

Forces and moment calculation for each zone are reported in the file series fort.7???

and each sub-domain forces and moments are reported in the file series fort.8??? or

fort.9??? (in body coordinates). In addition, the user may supply a list of sections

for which forces and moments are calculated. This is prescribed in the file surface -

force list.dat. The structure of the file is as follows:

1

1 1 1 1 1 1 1

Figure D.6: File format for (surface force list.dat)

The first line signifies the number of entries. Each entry contains seven integer

values signifying the zone number of the section followed by ξmin, ξmax, ηmin, ηmax,

ζmin, ζmax. The results are reported in a list of files, one per entry, with the naming

convention: surface force [100+entry number].dat for the forces and moments and

surface force coeffs [100+entry number].dat for the coefficients. Each line contains

the step number, the time, and six values for the forces and moments or the coefficients

thereof.
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Appendix E

Test Cases

E.1 Flow Solver

E.1.1 RAE 2822 Super Critical Airfoil

The RAE2822 supercritical airfoil is a well known test case. It is used for the vali-

dation of flow solvers with respect to transonic turbulent flows. It has been tested in

the RAE wind tunnel in 11 different flow conditions at Mach numbers ranging from

M∞ = 0.676 to M∞ = 0.75, and at several Reynolds numbers [44]. Out of the 11

experiments flow condition examined, case 9 has been chosen here as the benchmark

case. The experimental flow conditions were set at Mach number of M∞ = 0.73,

angle of attack of α = 3.19◦, and a Reynolds number of Re = 6.5 × 106. To com-

pare the experimental data with a flow around an airfoil in free-flight conditions,

corrections to the wind tunnel data are required. Various wind tunnel corrections

have been suggested in the literature. The correction used in EUROVAL project [45]

is adopted. These corrections correspond to the following flow conditions: Mach

number of M∞ = 0.734, angle of attack of α = 2.54◦, and a Reynolds number of

Re = 6.5 × 106.Note that in the experiments, transiton has been tripped near the

leading edge of the airfoil at x/c = 0.03 on both upper and lower surfaces of the

airfoil.

Figure E.1 shows a close up of a C type mesh that was generated for the purpose
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Figure E.1: RAE 2822 computational mesh
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Figure E.2: Pressure coefficient
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of flow simulations. Various turbulence models have been examined and the results

presented herein include results from 3 Reynolds stress models and the k − ω-TNT

RANS model. Riemann type boundary conditions are set at all boundaries, except

for the wall and the cut. Figure E.2 shows a comparison of the computed pressure

coefficient with the experimental one. All models exhibit excellent agreement with

the experiment.

The following figures (Figures E.3-E.6) contain excerpts from the input files that

are used for this simulation. The figures describe the input entries that are related

to the flow conditions, time step, method, restart information, and turbulence model

inputs. Note that one of the figures is repeated, once for the k − ω-TNT model and

once for the RSM-MCL model.

$FLOINP

ALT = 0.0 ! Default is 0.0 !

ALP = 2.54 ! Default is 0.0 !

BET = 0.0 ! Default is 0.0 !

FSMACH = 0.734 ! Default is 0.84 !

REY = 6500000.0 ! Default is 1000000 !

PR = 0.92 ! Default is 0.7 !

GAMMA = 1.4 ! Default is 1.4 !

IGAMMAF = 0 ! Default is 0 !

IPERFLOW = 0 ! Default is 0 !

ILOWMACH = 0 ! Default is 0 !

$END

Figure E.3: Flow conditions for the RAE 2822 case 9
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$TIMINP

GDTI = -1.0 ! Default is -1.0 !

GDTF = -50.0 ! Default is -1.0 !

FSA = 0.5 ! Default is 0.5 !

DDT = 0.0 ! Default is 0.0 !

H = 1.0 ! Default is 1.0 !

$END

$METINP

IMET = 1 ! Default is 1 !

IFSFX = 2 ! Default is 3 !

IFSFY = 2 ! Default is 3 !

IFSFZ = 2 ! Default is 3 !

ILIMITER = 1 ! Default is 1 !

NRK = 1 ! Default is 1 !

IDODDADI = 0 ! Default is 0 !

NSUBITER = 1 ! Default is 1 !

$END

$RESINP

ISTART = 0 ! Default is 0 !

NSTEPS = 5000 ! Default is 1 !

ISLOWS = 50 ! Default is 30 !

IRUN = 1 ! Default is 1 !

$END

Figure E.4: Time step, method, and restart info for the RAE 2822 case 9
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$VISINP

IVISG = 1 ! Default is 0 !

ITURG = 6 ! Default is 0 !

ITRANS = 0 ! Default is 0 !

RTINIT = 1.0 ! Default is 1.0 !

TUINT = 0.001 ! Default is 0.001 !

VMUETINF = 0.01 ! Default is 0.01 !

GDT_TURBI = 1.0 ! Default is GDTI !

GDT_TURBF = 2200.0 ! Default is GDTF !

IDES = 0 ! Default is 0 !

ITORDD = 1 ! Default is 1!

ITMIMP = 1 ! Default is 1!

$END

Figure E.5: Turbulence model input (k − ω-TNT) for the RAE 2822 case 9

$VISINP

IVISG = 1 ! Default is 0 !

ITURG = 13 ! Default is 0 !

ITRANS = 0 ! Default is 0 !

RTINIT = 1.0 ! Default is 1.0 !

TUINT = 0.001 ! Default is 0.001 !

VMUETINF = 0.1 ! Default is 0.01 !

GDT_TURBI = 0.1 ! Default is GDTI !

GDT_TURBF = 40.0 ! Default is GDTF !

IDES = 0 ! Default is 0 !

ITORDD = 2 ! Default is 1!

ITMIMP = 1 ! Default is 1!

$END

Figure E.6: Turbulence model input (RSM-MCL) for the RAE 2822 case 9
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Figure E.7: NACA 4412 computational mesh

E.1.2 NACA 4412 Airfoil

The NACA 4412 test is a well known test case for high lift separated flows. The flow

conditions in this case are an angle of attack of α = 13.87◦, a Reynolds number of

Re∞ = 1.52× 106, and a free stream Mach number of M∞ = 0.2. At this incidence,

a steady trailing-edge separation is present. Figure E.7 shows a close up of the

computational mesh. This example has been run using two inviscid flux methods, the

HLLC flux difference splitting (FDS) and the Steger-Warming flux vector splitting

(FVS). A comparison of the calculated stream-wise velocity at the station
x

C
= 0.953

is given in Figure E.8. An interesting result is that Stege-Warming FVS provides a

better comparison with the experiment than HLLC FDS. Figure E.9 describes the

typical convergence for such a case. Note that proper separation and reversed flow are

obtained only after the flow solution has fully converged. Figures E.10-E.15 contain

excerpts from the input files that are used for this simulation. The only difference

between the HLLC run and the Steger-Warming run is in the choice fo flux evaluation

as may bee seen in Figures E.12 (HLLC) and E.13 (Steger-Warming).
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Figure E.8: Stream-wise velocity at the station
x
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= 0.953
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Figure E.9: Convergence time history

$FLOINP

ALT = 0.0 ! Default is 0.0 !

ALP = 13.87 ! Default is 0.0 !

BET = 0.0 ! Default is 0.0 !

FSMACH = 0.2 ! Default is 0.84 !

REY = 1520000.0 ! Default is 1000000 !

PR = 0.92 ! Default is 0.7 !

GAMMA = 1.4 ! Default is 1.4 !

IGAMMAF = 0 ! Default is 0 !

IPERFLOW = 0 ! Default is 0 !

ILOWMACH = 0 ! Default is 0 !

$END

Figure E.10: Flow conditions for the NACA 4412 case
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$TIMINP

GDTI = -1.0 ! Default is -1.0 !

GDTF = -10.0 ! Default is -1.0 !

FSA = 0.5 ! Default is 0.5 !

DDT = 0.0 ! Default is 0.0 !

H = 1.0 ! Default is 1.0 !

$END

Figure E.11: Time step and spatial accuracy for the NACA 4412 case

$METINP

IMET = 1 ! Default is 1 !

IFSFX = 2 ! Default is 3 !

IFSFY = 2 ! Default is 3 !

IFSFZ = 2 ! Default is 3 !

ILIMITER = 1 ! Default is 1 !

NRK = 1 ! Default is 1 !

IDODDADI = 0 ! Default is 0 !

NSUBITER = 1 ! Default is 1 !

$END

Figure E.12: Method for the NACA 4412 case (HLLC)

$METINP

IMET = 1 ! Default is 1 !

IFSFX = 1 ! Default is 3 !

IFSFY = 1 ! Default is 3 !

IFSFZ = 1 ! Default is 3 !

ILIMITER = 1 ! Default is 1 !

NRK = 1 ! Default is 1 !

IDODDADI = 0 ! Default is 0 !

NSUBITER = 1 ! Default is 1 !

$END

Figure E.13: Method for the NACA 4412 case (Steger-Warming
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$RESINP

ISTART = 0 ! Default is 0 !

NSTEPS = 10000 ! Default is 1 !

ISLOWS = 100 ! Default is 100 !

IRUN = 1 ! Default is 1 !

$END

Figure E.14: Restart info for the NACA 4412 case

$VISINP

IVISG = 1 ! Default is 0 !

ITURG = 6 ! Default is 0 !

ITRANS = 0 ! Default is 0 !

RTINIT = 1.0 ! Default is 1.0 !

TUINT = 0.001 ! Default is 0.001 !

VMUETINF = 0.01 ! Default is 0.01 !

GDT_TURBI = 1.0 ! Default is GDTI !

GDT_TURBF = 2200.0 ! Default is GDTF !

IDES = 0 ! Default is 0 !

ITORDD = 1 ! Default is 1!

ITMIMP = 1 ! Default is 1!

$END

Figure E.15: Turbulence model input for the NACA 4412 case
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Figure E.16: Onera M6 computational mesh, color coded surface pressure, and tur-
bulent viscosity contour lines

E.1.3 Onera M6 Transonic Wing

The Onera M6 wing is a well known test case for flows about wings in transonic

flow conditions. The geometry of the Onera M6 wing is as follows: a root chord of

Cr = 0.8059 m a semi-span of b
2
= 1.1963 m, the aspect ratio is AR = 3.8, the taper

ratio is λ = 0.56, and the sweep angle of the quarter chord is Λ25% = 26.7◦. The

airfoil is relatively thick and it is symmetric.

The flow conditions were set to a free stream Mach number of M∞ = 0.84 and

an angle of attack of α = 3.06◦. Experimental data for this specific case is readily

available. Numerical simulations were conducted assuming viscous turbulent flow

with a Reynolds number of Re = 11.72 × 106. Figure E.16 shows a slice of the

computational mesh, color coded surface pressure (where the λ shock can be clearly

seen) , and contour lines of the turbulent viscosity. This simulation was conducted

using DDADI inversion (with two sub-iterations) and the k−ω-TNT turbulence model

(see Figures E.17 and E.18). A representative comparison of the calculated surface

pressure coefficient with the experimental one, at a semi-span location of
y

b/2
= 0.9

can be found in Figures E.19.
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$TIMINP

GDTI = -5.0 ! Default is -1.0 !

GDTF = -200.0 ! Default is -1.0 !

FSA = 0.5 ! Default is 0.5 !

DDT = 0.0 ! Default is 0.0 !

H = 1.0 ! Default is 1.0 !

$END

$METINP

IMET = 1 ! Default is 1 !

IFSFX = 2 ! Default is 3 !

IFSFY = 2 ! Default is 3 !

IFSFZ = 2 ! Default is 3 !

ILIMITER = 1 ! Default is 1 !

NRK = 1 ! Default is 1 !

IDODDADI = 2 ! Default is 0 !

NSUBITER = 1 ! Default is 1 !

$END

Figure E.17: Time step and method for the Onera M6 case

$VISINP

IVISG = 1 ! Default is 0 !

ITURG = 6 ! Default is 0 !

RTINIT = 0.01 ! Default is 0.01 !

TUINT = 0.02 ! Default is 0.02 !

VMUETINF = 0.1 ! Default is 0.1 !

! GDT_TURBI = -2.0 !Default is GDTI !

! GDT_TURBF = -20.0 !Default is GDTF !

IDES = 0 ! Default is 0 !

ITORDD = 1 ! Default is 1!

ITMIMP = 1 ! Default is 1!

$END

Figure E.18: Turbulence model input (k − ω-TNT) for the Onera M6 case
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Figure E.19: Pressure coefficient at
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= 0.9
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E.2 Aeroelasticity Module

E.2.1 Basic Wing-Fuselage-Tail Test-Case - The PHDP

The basic test case is that of a generic transport model (a.k.a. PhD plane, or PHDP)

that includes thre aerodynamic grid zones for the fuselage, wing and tail, plus collar

zones. The structural grids are provided in three separate files, grid s 101.dat, grid -

s 102.dat, and grid s 103.dat, for the fuselage, wing and tail respectively. Figure E.20

presents a sample grid file structure. The modes are provided in NASTRAN punch

format, in files mode s 101.dat, mode s 102.dat, and mode s 103.dat, for the fuselage,

wing and tail respectively. Figure E.21 presents a sample modes-file structure. Each

mode file has 15 modes, out of which two are rigid-body modes. The first five modes

are splined to the aerodynamic surface grids (N MODES=5), and out of them only

the first three elastic modes are used in the aeroelastic analysis. The two rigid body

modes (N RBMODES = 2) are splined to the aero grids but are not used in the

aeroelastic analysis.

Figures E.22 and E.23 present the elastic- and spline-related inputs, respectively,

in the main input file eznss.i.defaults. In this run IELAST = -1, namely the code

performs the spline and exists (no aerodynamic/aeroelastic analysis is performed).

The rest of the parameters in the ELAINP namelist are therefore irrelevant for this

analysis. Figure E.24 presents the first two entries in file spline.i for this test case,

indicating that the first structural zone (fuselage) goes through beam spline (IS -

SS=0), while the second and third structural zones (wing and tail) go through surface

spline (IS SS=1), and that aerodynamic zone number 1 gets its spline info from

structural zone number 1 (ISPLINE FROM = 1), and similarly 2 from 2 and 3 from

3. The rest of the entries in file spline.i get their default values.

Figure E.25 presents the wing surface mesh (grey, only every other i grid), and on

top of it the structural nodes that are used in the wing mode spline (red, connected

in line). The structural data is from file struct 100.dat. Plotting the structural

spline nodes on top of the aerodynamic surfaces serves for validation of the selected

structural spline nodes. Figure E.26 presents the first elastic mode, plotted from file

mode a 103.dat (blue), together with the undeformed surface grids (grey). Similar

Israeli Computational Fluid Dynamics Center LTD



Test Cases 173

GRID 7001 0. 0. 0.

GRID 7002 .666667 0. 0.

GRID 7003 1.33333 0. 0.

GRID 7004 2. 0. 0.

GRID 7005 2.66666 0. 0.

GRID 7006 3.33333 0. 0.

GRID 7007 4. 0. 0.

GRID 7008 4.66666 0. 0.

GRID 7009 5.33333 0. 0.

GRID 7010 6. 0. 0.

GRID 7011 6.66666 0. 0.

GRID 7012 7.33333 0. 0.

GRID 7013 8.25537 0. 0.

GRID 7014 8.66666 0. 0.

GRID 7015 9.33333 0. 0.

GRID 7016 10.0 0. 0.

GRID 7017 10.6666 0. 0.

GRID 7018 11.3333 0. 0.

GRID 7019 12.0000 0. 0.

GRID 7020 12.6666 0. 0.

GRID 7021 13.3333 0. 0.

GRID 7022 14.0000 0. 0.

GRID 7023 14.6666 0. 0.

GRID 7024 15.3333 0. 0.

GRID 7025 16.2000 0. 0.

GRID 7026 16.6666 0. 0.

GRID 7027 17.3333 0. 0.

GRID 7028 18.0000 0. 0.

GRID 7029 18.6666 0. 0.

GRID 7030 19.3333 0. 0.

GRID 7031 20. 0. 0.

Figure E.20: Sample grid file grid s 101.dat

Israeli Computational Fluid Dynamics Center LTD



Test Cases 174

$TITLE = NACA PLANE MODAL ANALYSIS 1

$SUBTITLE= 2

$LABEL = 3

$EIGENVECTOR 4

$REAL OUTPUT 5

$SUBCASE ID = 1 6

$EIGENVALUE = 0.0000000E+00 MODE = 1 7

7001 G 6.654263E-19 0.000000E+00 1.389617E-02 8

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 9

7002 G 7.421637E-19 0.000000E+00 1.382501E-02 10

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 11

7003 G 6.910631E-19 0.000000E+00 1.375385E-02 12

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 13

7004 G 4.513296E-19 0.000000E+00 1.368269E-02 14

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 15

7005 G -6.634158E-19 0.000000E+00 1.361153E-02 16

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 17

7006 G -1.534254E-18 0.000000E+00 1.354037E-02 18

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 19

7007 G -3.291892E-18 0.000000E+00 1.346921E-02 20

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 21

7008 G -3.733346E-18 0.000000E+00 1.339805E-02 22

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 23

7009 G -2.847275E-18 0.000000E+00 1.332689E-02 24

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 25

7010 G -1.793405E-18 0.000000E+00 1.325573E-02 26

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 27

7011 G -6.701911E-19 0.000000E+00 1.318457E-02 28

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 29

7012 G -2.451984E-19 0.000000E+00 1.311340E-02 30

-CONT- 0.000000E+00 1.067413E-04 0.000000E+00 31

Figure E.21: Sample modes file mode s 101.dat

$ELAINP

IELAST = -1 ! Default is 0 !

IDEFMET = 1 ! Default is 1 !

ITER_ELAST_STAGE = 0 ! Default is 0 !

ELAST_FACT = 1.0 ! Default is 1.0 !

DAMPING = 0.0 ! Default is 0.0 !

$END

Figure E.22: Elastic related inputs in the main input file eznss.i.defaults
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$SPLINP

IS_FSP = 0 ! Default is 0 !

IS_TAS = 1 ! Default is 1 !

NSSURF = 3 ! Default is 1 !

ISFLAG = 0 ! Default is 1 !

N_MODES = 5 ! Default is 1 !

N_RBMODES = 2 ! Default is 0 !

MFORM = 1 ! Default is 1 !

SCALE = 1.0 ! Default is 1.0 !

SCALEM = 1.0 ! Default is 1.0 !

SCALEA = 1.0 ! Default is 1.0 !

PLOT_FACTOR = 10.0 ! Default is 1.0 !

$END

Figure E.23: Spline related inputs in the main input file eznss.i.defaults

$IS_SS

1 0

2 1

3 1

$END

$ISPLINE_FROM

1 1

2 2

3 3

$END

Figure E.24: First entries in input file spline.i
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plots can be plotted for each mapped mode.

Figure E.25: Structural grid of the PHDP wing

E.2.2 Multi-block Wing

The multi-block (MB) wing is the wing of the PHDP that was broken into four grid

zones (three grid zones for the wing plus a ’world-grid’ that wraps around the wing

grids and extends to the far field), in order to demonstrate the spline procedure using

multiple aerodynamic grid zones. Figure E.27 shows the overlapping surface grids of

the three wing zones. The structural grid locations are shown in figure E.28 in blue

(with the aerodynamic grid in the background in light grey). Notice that there is

only a single structural zone. The spline procedure maps the modes provided in the

grids of this single structural zone into the grids of the three aerodynamic zones.

The elastic- and spline-related entries in file eznss.i.defaults are similar to those

presented for the PHDP test case. Figure E.29 presents the first two entries in file

spline.i for the MB wing test case, indicating that the first (and only) structural

zone (wing) goes through surface spline (IS SS=1). Aerodynamic zone number 1
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Figure E.26: First elastic mode shape mapped to the surface grid

Figure E.27: Aerodynamic surface grid of the MB wing

Israeli Computational Fluid Dynamics Center LTD



Test Cases 178

Figure E.28: Structural grid of the MB wing

(world zone) does not go through spline (ISPLINE FROM = 0), while aerodynamic

zones 2-3 (segments of the wing) get their spline info from the first structural zone

(ISPLINE FROM = 1). The rest of the entries in file spline.i get their default values.

Figure E.30 presents the first elastic mode, plotted from file mode a 103.dat, showing

the smooth spline across the three zones that make up the wing.

$IS_SS

1 1

$END

$ISPLINE_FROM

1 0

2 1

3 1

4 1

$END

Figure E.29: First entries in input file spline.i
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Figure E.30: First elastic mode shape mapped to the MB surface grids

E.2.3 Constrained Deformations - Wing-tip Missile

This test case demonstrates the application of ’constrained deformation’ in which a

pre-defined sub-domain is rigidly connected via a single point to a physical coordinate

on an aerodynamic zone, and moves (translates and rotates) rigidly with it. This

would be the case of a wing-tip missile that is connected with a ’bolt’ to a point on

the wing tip. The missile itself is rigid, does not have structural modal data, and is

constrained to move rigidly with the point that it attaches to. The following test case

is of the PHDP with added wing-tip missile, shown in grey figure E.31. The missile

is intentionally located away from the wing tip. It attaches to the wing (aerodynamic

zone 2) at point (10.695, 10.0, 0.0), which does not necessarily coincide with a grid

point on the wing. The scheme searches for the closest grid point and attaches the

missile sub-domain to it.

The missile aerodynamic zone (zone 4) is defined as a sub-domain in the ar-

rays input file eznssa.i, and a single sub-domain is declared in the main input file

eznss.i.defaults as shown in Figures E.32 and E.33. Figure E.34 shows the entries

defining the attachment point (x,y,z coordinates and aerodynamic zone) in file spline.i.

Israeli Computational Fluid Dynamics Center LTD



Test Cases 180

Figure E.31: Wing-tip Missile Test-case - Before and After Elastic Deformatiom

The other non-default entries in this file are as in the basic PHDP test case (see sec-

tion E.2.1, figure E.24). The elastic and spline-related entries in file eznss.i.defaults

are also as in the basic PHDP case (Figures E.22 and E.23).

$SUBINP

NSUBD = 1 ! Default is 0 !

$END

Figure E.32: Defining the wing-tip missile sub-domain - main input file

E.2.4 Flaps

In this test case a single trailing-edge flap is defined for the PHDP wing, and deflected

5◦ down. The number of flaps is declared in the main input file eznss.i.defaults, in

the sub-domain namelist, as shown in Figure E.35. The rest of the flap inputs are

in file flap.i, shown in Figure E.36. The flap virtual grid is of size 31 × 11, defined

by IFLAPDIM and JFLAPDIM. These are default values that performed well for
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$ISUBD

4 1

$END

Figure E.33: Defining the wing-tip missile sub-domain - array input file

$SUBDXC

1 10.695

$END

$SUBDYC

1 10.0

$END

$SUBDZC

1 0.0

$END

$NSUBDC

1 2

$END

Figure E.34: Defining the attachment point in input file spline.i

some test cases. Be careful changing these numbers as too large values may result

in singularities in the transformation matrix. IFLAP declares that flap number one

resides in grid zone number 2 (the wing). IFLAPLT defines flap number one to be

a trailing edge flap. The flap hinge runs from x = 9.9, y = 3.0 (defined by variables

XFLAPR, YFLAPR) to x = 10.3, y = 5.0 (defined by variables XFLAPT, YFLAPT).

Finally, the flap deflection of 5◦ down is defined by variable XIFLAP. Figure E.37

shows the surface mesh after flap deflection, showing the smooth mesh and transition

between the flap region and the rest of the wing.

$SUBINP

NSUBD = 0 ! Default is 0 !

NFLAP = 1 ! Default is 0 !

$END

Figure E.35: Defining the number of flaps in the main input file
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$IFLAPDIM

1 31

$END

$JFLAPDIM

1 11

$END

$IFLAP

1 2

$END

$IFLAPLT

1 1

$END

$XFLAPR

1 9.9

$END

$YFLAPR

1 3.0

$END

$XFLAPT

1 10.3

$END

$YFLAPT

1 5.0

$END

$XIFLAP

1 5.0

$END

Figure E.36: Flap input file
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Figure E.37: Surface mesh of PHDP wing with deflected trailing-edge flap

E.2.5 Prescribed Sinusoidal Flap Motion

In this test case a single trailing-edge flap is defined for a High Altitude Long En-

durance (HALE) wing model. An aeroelastic simulation simulates the dynamic re-

sponse of the highly elastic wing to prescribed flap excitation of 1Hz frequency and

1◦ amplitude.

The relevant inputs in the main input file eznss.i.defaults are shown in figure E.38.

The case is declared to be elastic (IELAST=1), with solution of the dynamic aeroe-

lastic equation following each iteration (ITER ELAST STAGE=1). The remaining

aeroelastic parameters are set to their default values. Spline parameters are defined in

namelist SPLINEP. Ten modes (N MODES=10, no rigid boy modes, N RBMOES=0)

are read from Nastran punch file (MFORM=1). The Nastran finite-element model is

in length units of ft, and mass units of slugs, hence the scaling factors ( SCALE =

3.2808 and SCALEM = 0.06852).

A single flap (NFLAP=1) is defined in the SUBINP (sub-domain) namelist. Flap

sinusoidal excitation is prescribed in the excitation namelist, EXCINP (IEXC = 13).

The excitation frequency of the first (and only) flap is set to 1 Hz (EXC FREQ(1)
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= 1.0). Note that the the flap amplitude is NOT defined by the EXC XIMAX that

follows, but rather by XIFLAP in file flap.i (description follows). EXC XIMAX is set

to its default value of zero. VTIME0 defines the end time of the static analysis from

which the current analysis is restarted. The rest of the inputs in name list EXCINP

do not apply for flap motion.

The rest of the flap inputs are in file flap.i, shown in figure E.39. The flap vir-

tual grid is kept at the default size, as indicated by the empty IFLAPDIM and

JFLAPDIM entries. IFLAP declares that flap number one resides in grid zone num-

ber 1. IFLAPLT defines flap number one to be a trailing edge flap. The flap hinge runs

from x = 1.8, y = 27.7 (defined by variables XFLAPR, YFLAPR) to x = 1.8, y = 32.9

(defined by variables XFLAPT, YFLAPT). Finally, flap deflection amplitude of 5◦

down is defined by variable XIFLAP. Figure E.37 shows the surface mesh after flap

deflection, showing the smooth mesh and transition between the flap region and the

rest of the wing.
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$ELAINP

IELAST = 1 ! Default is 0 !

IDEFMET = 1 ! Default is 1 !

ITER_ELAST_STAGE = 1 ! Default is 0 !

ELAST_FACT = 1.0 ! Default is 1.0 !

DAMPING = 0.0 ! Default is 0.0 !

$END

$SUBINP

NSUBD = 0 ! Default is 0 !

NFLAP = 1 ! Default is 0 !

$END

$SPLINP

IS_FSP = 0 ! Default is 0 !

IS_TAS = 1 ! Default is 1 !

NSSURF = 1 ! Default is 1 !

ISFLAG = 1 ! Default is 1 !

N_MODES = 10 ! Default is 1 !

N_RBMODES = 0 ! Default is 0 !

MFORM = 1 ! Default is 1 !

SCALE = 3.2808 ! Default is 1.0 !

SCALEM = 0.06852 ! Default is 1.0 !

SCALEA = 1.0 ! Default is 1.0 !

PLOT_FACTOR = 10.0 ! Default is 1.0 !

$END

$EXCINP

IEXC = 13 ! Default is 0 !

EXC_FREQ(1) = 1.0 ! Default is 0.0 !

EXC_XIMAX(1) = 0.0 ! Default is 0.0 !

VTIME0 = 0.0 ! Default is 0.0 !

ISTEP0SS = 0 ! Default is 0 !

NIMP = 0 ! Default is 0 !

N_EXC_ST = 0 ! Default is 0 !

$END

Figure E.38: Defining elastic and flap inputs in the main input file for the case of flap
prescribed sinusoidal motion
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$IFLAPDIM

$END

$JFLAPDIM

$END

$IFLAP

1 1

$END

$IFLAPLT

1 1

$END

$XFLAPR

1 1.8

$END

$YFLAPR

1 27.7

$END

$XFLAPT

1 1.8

$END

$YFLAPT

1 32.9

$END

$XIFLAP

1 5.0

$END

Figure E.39: Flap input file for the case of flap prescribed sinusoidal motion
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